4.6 Article

Comparative study of the transcriptomes of Caco-2 cells cultured under dynamic vs. static conditions following exposure to titanium dioxide and zinc oxide nanomaterials

期刊

NANOTOXICOLOGY
卷 15, 期 9, 页码 1233-1252

出版社

TAYLOR & FRANCIS LTD
DOI: 10.1080/17435390.2021.2012609

关键词

Gut-on-chip; nanotoxicology; titanium dioxide; zinc oxide; transcriptomics

资金

  1. Royal Thai Government Scholarship
  2. Dutch Ministry of Agriculture, Nature and Food Quality [KB-23002-022]

向作者/读者索取更多资源

The study utilized a gut-on-chip in vitro system and found that under dynamic conditions, intestinal epithelial cells showed increased sensitivity to TiO2 and ZnO nanomaterials, with significantly different gene expression levels. This suggests that shear stress may be a major factor in cell susceptibility.
Due to the widespread application of food-relevant inorganic nanomaterials, the gastrointestinal tract is potentially exposed to these materials. Gut-on-chip in vitro systems are proposed for the investigation of compound toxicity as they better recapitulate the in vivo human intestinal environment than static models, due to the added shear stresses associated with the flow of the medium. We aimed to compare cellular responses of intestinal epithelial Caco-2 cells at the gene expression level upon TiO2 (E171) and ZnO (NM110) nanomaterial exposure when cultured under dynamic and conventionally applied static conditions. Whole-genome transcriptome analyses upon exposure of the cells to TiO2 and ZnO nanomaterials revealed differentially expressed genes and related biological processes that were culture condition specific. The total number of differentially expressed genes (p < 0.01) and affected pathways (p < 0.05 and FDR < 0.25) after nanomaterial exposure was higher under dynamic culture conditions than under static conditions for both nanomaterials. The observed increase in nanomaterial-induced responses in the gut-on-chip model indicates that shear stress might be a major factor in cell susceptibility. This is the first report on the application of a gut-on-chip system in which gene expression responses upon TiO2 and ZnO nanomaterial exposure are evaluated and compared to a static system. It extends current knowledge on nanomaterial toxicity assessment and the influence of a dynamic environment on cellular responses. Application of the gut-on-chip system resulted in higher sensitivity of the cells and might thus be an attractive system for use in the toxicological hazard characterization of nanomaterials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据