4.8 Article

Metallo-boranes: a class of unconventional superhalogens defying electron counting rules

期刊

NANOSCALE
卷 14, 期 5, 页码 1767-1778

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d1nr06929b

关键词

-

资金

  1. U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DE-FG02-96ER45579]
  2. Office of Science of the U.S. Department of Energy [DE-AC0205CH11231]

向作者/读者索取更多资源

Superhalogens are highly electronegative atomic clusters that exceed halogens in electron affinity. Recently, a new class of superhalogens has been discovered by doping closo-boranes and replacing B atoms with selected metal atoms. These clusters defy electron counting rules and exhibit unexpected behavior.
Superhalogens are a class of highly electronegative atomic clusters whose electron affinities exceed those of halogens. Due to their potential for promoting unusual reactions and role as weakly coordinating anions as well as building blocks of bulk materials, there has been considerable interest in their design and synthesis. Conventional superhalogens are composed of a metal atom surrounded by halogen atoms. Their large electron affinities are due to the fact that the added electron is distributed over all the halogen atoms, reducing electron-electron repulsion. Here, using density functional theory with a hybrid exchange-correlation functional, we show that a new class of superhalogens can be developed by doping closo-boranes (e.g., B12H12) with selected metal atoms such as Zn and Al as well as by replacing a B atom with Be or C. Strikingly, these clusters defy electron counting rules. For example, according to the Wade-Mingos rule, Zn(B12H12) and Al(BeB11H12) are closed-shell systems that should be chemically inert and, hence, should have very small electron affinities. Similarly, Zn(B12H11), Al(B12H12), and Zn(CB11H12), with one electron more than needed for electronic shell closure, should behave like superalkalis. Yet, all these clusters are superhalogens. This unexpected behavior originates from an entirely different mechanism where the added electron resides on the doped metal atom that is positively charged due to electron transfer.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据