4.8 Article

Highly sensitive, flexible and biocompatible temperature sensor utilizing ultra-long Au@AgNW-based polymeric nanocomposites

期刊

NANOSCALE
卷 14, 期 5, 页码 1742-1754

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d1nr05068k

关键词

-

向作者/读者索取更多资源

This study presents the development of a flexible and biocompatible high-resolution wearable temperature sensor using ultra-long Ag-Au core-sheath nanowires dispersed in elastomeric media. The novel nanocomposite ink can be printed on interdigitated electrodes to fabricate a temperature sensor with negative temperature coefficient of resistance and quick response time. The proposed temperature sensing mechanism controls the internanowire distance of the nanowires which demonstrates promise for a range of wearable applications.
Owing to their excellent sensitivity, stretchability, flexibility and conductivity, polymeric nanocomposites with conductive fillers have shown promise for a wide range of applications in bioelectronics and wearable devices. Herein, we report on the development of a flexible and biocompatible polymeric nanocomposite comprising ultra-long Ag-Au core-sheath nanowires (Au@AgNWs) dispersed in elastomeric media to fabricate a high-resolution wearable temperature sensor. Ultra-long AgNWs with an aspect ratio of about 1500 were synthesized using a Ca2+ ion-mediated facile one-pot polyol process. To enhance the biocompatibility and anti-oxidative property of the AgNWs, a 10-20 nm gold (Au) layer was conformably deposited without affecting the original nanowire morphology. The core-sheath structure of Au@AgNWs was characterized using HRTEM and EDS elemental mapping while the biocompatibility and anti-oxidative properties were tested using hydrogen peroxide (H2O2) etching in solution phase. Finally, the fabricated nanowires were used to prepare the Au@AgNW-poly-ethylene glycol (PEG)-polyurethane (PU)-based nanocomposite ink which can be printed on interdigitated electrodes to fabricate a thermoresistive temperature sensor with negative temperature coefficient (NTC) of resistance and quick response time (<100 s). The Au@AgNW-PEG-PU nanocomposite was characterized in detail and a novel temperature sensing mechanism based on controlling the internanowire distance of the PEG coated Au@AgNWs percolation by means of capillarity force among the nanowires as a result of the glass transition temperature of thermosensitive PEG was demonstrated. The proposed printable temperature sensor is flexible and biocompatible and shows promise for a range of wearable applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据