4.6 Review

Computational Studies of Au(I) and Au(III) Anticancer MetalLodrugs: A Survey

期刊

MOLECULES
卷 26, 期 24, 页码 -

出版社

MDPI
DOI: 10.3390/molecules26247600

关键词

antitumor complexes; Au(I) complexes; Au(III) complexes; anticancer metallodrugs; computations

向作者/读者索取更多资源

Computational chemistry approaches have become crucial for the development of novel anticancer metallodrugs, with inorganic and organometallic complexes of transition metals showing increasing potential in cancer treatment. Among them, Au(I) and Au(III) compounds are promising candidates due to their strong affinity to protein residues. Predicting metal complexes' properties requires QM computations, while MM, MD, and docking approaches can provide valuable information on their interaction with biomolecular targets.
Owing to the growing hardware capabilities and the enhancing efficacy of computational methodologies, computational chemistry approaches have constantly become more important in the development of novel anticancer metallodrugs. Besides traditional Pt-based drugs, inorganic and organometallic complexes of other transition metals are showing increasing potential in the treatment of cancer. Among them, Au(I)- and Au(III)-based compounds are promising candidates due to the strong affinity of Au(I) cations to cysteine and selenocysteine side chains of the protein residues and to Au(III) complexes being more labile and prone to the reduction to either Au(I) or Au(0) in the physiological milieu. A correct prediction of metal complexes' properties and of their bonding interactions with potential ligands requires QM computations, usually at the ab initio or DFT level. However, MM, MD, and docking approaches can also give useful information on their binding site on large biomolecular targets, such as proteins or DNA, provided a careful parametrization of the metal force field is employed. In this review, we provide an overview of the recent computational studies of Au(I) and Au(III) antitumor compounds and of their interactions with biomolecular targets, such as sulfur- and selenium-containing enzymes, like glutathione reductases, glutathione peroxidase, glutathione-S-transferase, cysteine protease, thioredoxin reductase and poly (ADP-ribose) polymerase 1.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据