4.6 Article

Mesenchymal Stem Cell-derived Extracellular Vesicles Transmitting MicroRNA-34a-5p Suppress Tumorigenesis of Colorectal Cancer Through c-MYC/DNMT3a/PTEN Axis

期刊

MOLECULAR NEUROBIOLOGY
卷 59, 期 1, 页码 47-60

出版社

SPRINGER
DOI: 10.1007/s12035-021-02431-9

关键词

Colorectal cancer; Mesenchymal stem cells; Extracellular vesicles; MicroRNA-34a-5p; c-MYC; DNA methyltransferase 3a; Phosphatase and tensin homolog deleted on chromosome 10

向作者/读者索取更多资源

Mesenchymal stem cell-derived extracellular vesicles (MSC-EV) can deliver microRNAs (miRNAs) into colorectal cancer (CRC) cells to inhibit malignant phenotype. In this study, it was found that transport of miR-34a-5p by MSC-EV suppressed CRC development by modulating the interaction of c-MYC, DNMT3a, and PTEN. Additionally, restoration of miR-34a-5p or depletion of c-MYC in MSC-EV limited CRC tumor formation.
Mesenchymal stem cell-derived extracellular vesicles (MSC-EV) can transport microRNAs (miRNAs) into colorectal cancer (CRC) cells, thus to inhibit the malignant phenotype of cancer cells. Whether MSC-EV could deliver miR-34a-5p to suppress CRC development was surveyed through the research. miR-34a-5p, c-MYC, DNA methyltransferase 3a (DNMT3a), and phosphatase and tensin homolog deleted on chromosome 10 (PTEN) expression were measured in CRC tissues and cell lines. miR-34a-5p and c-MYC expression were altered by transfection in HCT-116 cells. MSC-EV were transfected with miR-34a-5p- and c-MYC-related oligonucleotides and co-cultured with HCT-116 cells. HCT-116 cell growth after treatment was observed. Furthermore, the functional roles of miR-34a-5p and c-MYC were explored in vivo. The combined interactions of miR-34a-5p/c-MYC/DNMT3a/PTEN axis were assessed. miR-34a-5p and PTEN were downregulated while c-MYC and DNMT3a were upregulated in CRC. Depletion of miR-34a-5p drove while that of c-MYC restricted CRC cell growth. MSC-EV retarded CRC progression. Moreover, MSC-EV carrying overexpressed miR-34a-5p or depleted c-MYC further disrupted CRC cell progression. miR-34a-5p targeted c-MYC to regulate DNMT3a and PTEN. c-MYC overexpression abrogated EV-derived miR-34a-5p upregulation-induced effects on CRC. Restoring miR-34a-5p or depleting c-MYC in MSC-EV limited CRC tumor formation. MSC-EV-derived miR-34a-5p depresses CRC development through modulating the binding of c-MYC to DNMT3a and epigenetically regulating PTEN.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据