4.4 Article

Correlations of blood and brain biochemistry in phenylketonuria: Results from the Pah-enu2 PKU mouse

期刊

MOLECULAR GENETICS AND METABOLISM
卷 134, 期 3, 页码 250-256

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ymgme.2021.09.004

关键词

Phenylketonuria; Brain biochemistry; Plasma amino acids; Large Neutral Amino Acids (LNAA); Monoaminergic neurotransmitters; Neurocognitive outcome

向作者/读者索取更多资源

Blood Phe remains the best predictor of brain biochemistry in PKU patients, but neurocognitive and behavioral outcomes cannot be fully explained by blood or brain Phe concentrations, necessitating the search for other additional parameters.
Background: In phenylketonuria (PKU), treatment monitoring is based on frequent blood phenylalanine (Phe) measurements, as this is the predictor of neurocognitive and behavioural outcome by reflecting brain Phe con-centrations and brain biochemical changes. Despite clinical studies describing the relevance of blood Phe to out-come in PKU patients, blood Phe does not explain the variance in neurocognitive and behavioural outcome completely. Methods: In a PKU mouse model we investigated 1) the relationship between plasma Phe and brain biochemistry (Brain Phe and monoaminergic neurotransmitter concentrations), and 2) whether blood non-Phe Large Neutral Amino Acids (LNAA) would be of additional value to blood Phe concentrations to explain brain biochemistry. To this purpose, we assessed blood amino acid concentrations and brain Phe as well as monoaminergic neuro -transmitter levels in in 114 Pah-Enu2 mice on both B6 and BTBR backgrounds using (multiple) linear regression analyses. Results: Plasma Phe concentrations were strongly correlated to brain Phe concentrations, significantly negatively correlated to brain serotonin and norepinephrine concentrations and only weakly correlated to brain dopamine concentrations. From all blood markers, Phe showed the strongest correlation to brain biochemistry in PKU mice. Including non-Phe LNAA concentrations to the multiple regression model, in addition to plasma Phe, did not help explain brain biochemistry. Conclusion: This study showed that blood Phe is still the best amino acid predictor of brain biochemistry in PKU. Nevertheless, neurocognitive and behavioural outcome cannot fully be explained by blood or brain Phe concen-trations, necessitating a search for other additional parameters. Take-home message: Blood Phe is still the best amino acid predictor of brain biochemistry in PKU. Nevertheless, neurocognitive and behavioural outcome cannot fully be explained by blood or brain Phe concentrations, neces-sitating a search for other additional parameters. (c) 2021 Published by Elsevier Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据