4.5 Article

Epigenetic Silencing of 15-Hydroxyprostaglandin Dehydrogenase by Histone Methyltransferase EHMT2/G9a in Cholangiocarcinoma

期刊

MOLECULAR CANCER RESEARCH
卷 20, 期 3, 页码 350-360

出版社

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/1541-7786.MCR-21-0536

关键词

-

资金

  1. NIH [CA102325, CA219541, CA226281]
  2. Department of Defense [CA180361]

向作者/读者索取更多资源

This study reveals a novel G9a-15PGDH signaling axis that is important in the development and progression of cholangiocarcinoma (CCA). 15-PGDH is epigenetically silenced by G9a, and inhibition of G9a can restore 15-PGDH expression and inhibit CCA cell growth.
Cholangiocarcinoma (CCA) is a lethal malignancy with few therapeutic options. NAD(+)-dependent 15-hydroxyprostaglandin dehydrogenase (15-PGDH) has been shown to inhibit CCA cell growth in vitro and in xenograft models. However, the role of 15-PGDH in CCA development has not been investigated and the mechanism for 15-PGDH gene regulation remains unclear. Here, e evaluated the role of 15-PGDH in CCA development by using a mouse model with hydrodynamic tail vein injection of transposase-based plasmids expressing Notch1 intracellular domain and myrAkt, with or without co-injection of 15-PGDH expression plasmids. Our results reveal that 15-PGDH overexpression effectively prevents CCA development. Through patient data mining and experimental approaches, we provide novel evidences that 15-PGDH is epigenetically silenced by histone methyltransferase G9a. We observe that 15-PGDH and G9a expressions are inversely correlated in both human and mouse CCAs. By using CCA cells and mouse models, we show that G9a inhibition restores 15-PGDH expression and inhibited CCA in vitro and in vivo. Mechanistically, our data indicate that G9a is recruited to 15-PGDH gene promoter via protein-protein interaction with the E-box binding Myc/Max heterodimer. The recruited G9a then silences 15-PGDH gene through enhanced methylation of H3K9. Our further experiments have led to the identification of STAT4 as a key transcription factor involved in the regulation of 15-PGDH by G9a. Collectively, our findings disclose a novel G9a-15PGDH signaling axis which is importantly implicated in CCA development and progression.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据