4.7 Article

Heterologous production of active form of beta-lytic protease by Bacillus subtilis and improvement of staphylolytic activity by protein engineering

期刊

MICROBIAL CELL FACTORIES
卷 20, 期 1, 页码 -

出版社

BMC
DOI: 10.1186/s12934-021-01724-x

关键词

Bacillus subtilis; Heterologous expression; Protein engineering; Staphylococcus aureus; MRSA; Beta-lytic protease; BLP; M23 protease family

向作者/读者索取更多资源

In this study, we successfully secreted the Lysobacter enzymogenes beta-lytic protease (BLP) in Bacillus subtilis, marking the first report of heterologous production of BLP in its active form, providing potential for industrial applications. Additionally, a new strategy of utilizing the extracellular proteases of B. subtilis for maturation of heterologous proteins was proposed in this study.
Background Most of the proteases classified into the M23 family in the MEROPS database exhibit staphylolytic activity and have potential as antibacterial agents. The M23 family is further classified into two subfamilies, M23A and M23B. Proteases of the M23A subfamily are thought to lack the capacity for self-maturation by auto-processing of a propeptide, which has been a challenge in heterologous production and application research. In this study, we investigated the heterologous expression, in Bacillus subtilis, of the Lysobacter enzymogenes beta-lytic protease (BLP), a member of the M23A subfamily. Results We found that B. subtilis can produce BLP in its active form. Two points were shown to be important for the production of BLP in B. subtilis. The first was that the extracellular proteases produced by the B. subtilis host are essential for BLP maturation. When the host strain was deficient in nine extracellular proteases, pro-BLP accumulated in the supernatant. This observation suggested that BLP lacks the capacity for self-maturation and that some protease from B. subtilis contributes to the cleavage of the propeptide of BLP. The second point was that the thiol-disulfide oxidoreductases BdbDC of the B. subtilis host are required for efficient secretory production of BLP. We infer that intramolecular disulfide bonds play an important role in the formation of the correct BLP conformation during secretion. We also achieved efficient protein engineering of BLP by utilizing the secretory expression system in B. subtilis. Saturation mutagenesis of Gln116 resulted in a Q116H mutant with enhanced staphylolytic activity. The minimum bactericidal concentration (MBC) of the wild-type BLP and the Q116H mutant against Staphylococcus aureus NCTC8325 was 0.75 mu g/mL and 0.375 mu g/mL, respectively, and the MBC against Staphylococcus aureus ATCC43300 was 6 mu g/mL and 3 mu g/mL, respectively. Conclusions In this study, we succeeded in the secretory production of BLP in B. subtilis. To our knowledge, this work is the first report of the successful heterologous production of BLP in its active form, which opens up the possibility of industrial use of BLP. In addition, this study proposes a new strategy of using the extracellular proteases of B. subtilis for the maturation of heterologous proteins.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据