4.7 Article

Wind deflection analysis of railway catenary under crosswind based on nonlinear finite element model and wind tunnel test

期刊

MECHANISM AND MACHINE THEORY
卷 168, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.mechmachtheory.2021.104608

关键词

Electrified railway; Catenary; Finite element; Wind deflection; Contact wire; Crosswind

资金

  1. Norwegian Railway Directorate

向作者/读者索取更多资源

This paper evaluates the wind deflection of railway catenary under crosswind through wind tunnel experiments and numerical simulations, finding that the wind deflection exceeds safety limits when the turbulence intensity is above 15%, and adjustments to system parameters can reduce the deflection.
This paper evaluates the railway catenary's wind deflection under crosswind based on wind tunnel experiments and a nonlinear finite element model. A catenary model is constructed based on the absolute nodal coordinate formulation to describe the geometrical nonlinearity of the system. The aerodynamic forces acting on the catenary are derived according to the quasi-steady theory, and the aerodynamic coefficients are obtained by wind tunnel experiments. A procedure to generate the three-dimensional fluctuating wind field along the catenary is presented. The extreme value of the wind deflection is estimated based on a Poisson approximation of the extreme value distribution. The numerical accuracy is validated by wind tunnel experimental results of an aeroelastic catenary. The response, statistics, frequency characteristics and extreme value of the contact wire's wind deflection are investigated through numerical simulations. The analysis results indicate that the maximum wind deflection will exceed the safety limit for the analysed catenary with a turbulence intensity of more than 15%. The adjustment of some critical parameters of the catenary system can reduce the maximum wind deflection.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据