4.7 Article

Enhanced performance of airfoil-based piezoaeroelastic energy harvester: numerical simulation and experimental verification

期刊

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ymssp.2021.108065

关键词

Computational fluid dynamics; Flow field characteristic; Aeroelastic vibration; Piezoaeroelastic energy harvester; Enhancing performance

资金

  1. National Natural Science Foundation of China [51875116]

向作者/读者索取更多资源

This paper conducts detailed simulation analyses of an airfoil-based piezoaeroelastic energy harvester with two degrees of freedom motion, investigating the effects of key structural parameters on performance and identifying crucial factors affecting the harvesting efficiency.
This paper performs the detailed simulation analyses of airfoil-based piezoaeroelastic energy harvester with two degrees of freedom self-induced plunge-pitch motions, for exploring the flow field characteristic and enhancing the harvesting performance. The designing of the harvester for achieving flutter is first accomplished, finite element model is then built and simulation analyses are performed, and a prototype of the harvester system is finally fabricated. The obtained simulation results are in good agreement with the experimental and theoretical values. The effects of the key structural parameters of the harvester on flow field, aeroelastic vibration, and harvesting performance are numerically investigated. The results demonstrated that the structural parameters of the harvester determine primarily flutter onset of velocity, and consequently affect the dynamic behavior and harvesting performance. The harvester system takes place flutter and occurs limit cycle oscillations after flutter onset of velocity, which is suitable for harvesting energy. The smaller pitch structural stiffness coefficient and the more moderate both plunge stiffness and pitch damping coefficients are, the better aeroelastic vibration and output performance can be captured. A maximum output voltage of 29.08 V and output power of 3.382 mW can be harvested when the linear and cubic structural stiffness coefficients in pitch are 2.5 N center dot m and 100 N center dot m at 14 m/s, respectively, which corresponds to the power density of 21.138 mW/cm3 and demonstrates the superior harvesting performance over others. This work provides a significant guidance for designing the more efficient airfoil-based piezoaeroelastic energy harvester utilized in unmanned aerial vehicles.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据