4.7 Article

Joint distribution adaptation with diverse feature aggregation: A new transfer learning framework for bearing diagnosis across different machines

期刊

MEASUREMENT
卷 187, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.measurement.2021.110332

关键词

Fault diagnosis; Rolling element bearing; Deep transfer learning; Joint distribution adaptation

资金

  1. National Natural Science Foundation of China [51775343]
  2. Shanghai Pujiang Program [18PJC031]

向作者/读者索取更多资源

This paper introduces a transfer network based on joint distribution adaptation, with a diverse feature aggregation module added to enhance feature extraction capability and automatically reduce distribution discrepancy. Experimental results demonstrate that the framework achieves significant diagnostic performance in the TDM scenario.
On account of lacking labeled samples for the bearing fault diagnosis in real engineering applications, transfer learning is widely investigated for transferring diagnosis information. A more challenging but realistic scenario called transfer across different machines (TDM) is investigated in this paper where previous approaches may degenerate greatly with more drastic domain shifts. A joint distribution adaptation-based transfer network with diverse feature aggregation (JDFA) is proposed, where the diverse feature aggregation module is added to enhance feature extraction capability across large domain gaps. Then the joint maximum mean discrepancy between source and target domain samples is adopted to reduce the distribution discrepancy automatically. Extensive TDM transfer learning experiments are conducted. The average accuracy reaches 99.178% that is much higher than state-of-the-art methods, demonstrating the proposed JDFA framework can effectively achieve superior diagnostic performance, and significantly promote fault diagnosis research under TDM scenario in view of applicability and practicability of algorithms.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据