4.3 Article

Development and Application of the 3D Model Test System for Water and Mud Inrush of Water-Rich Fault Fracture Zone in Deep Tunnels

期刊

MATHEMATICAL PROBLEMS IN ENGINEERING
卷 2021, 期 -, 页码 -

出版社

HINDAWI LTD
DOI: 10.1155/2021/8549094

关键词

-

资金

  1. China Chile International (Regional) Cooperation and Exchange Key Projects of the National Natural Science Foundation of China [41861134008]
  2. General Projects of Yunnan Basic Research Program [2018FB075]
  3. Key R&D Projects in Yunnan Province [202003AC100002]

向作者/读者索取更多资源

A set of three-dimensional physical model test systems has been developed to study water and mud inrush disasters in deep tunnel fault zones. The system uses self-developed similar materials for model tests and reveals changes in surrounding rock stress fields and seepage fields during tunnel excavation.
In order to study the evolution process, damage characteristics, and occurrence mechanism of water and mud inrush disaster in deep tunnel fault zone with infiltration instability under complex conditions, a set of the three-dimensional physical model test systems of water and mud inrush flow-solid coupling in tunnel fault zones is developed. The system mainly comprises a rigid test frame, ground stress loading system, hydraulic loading system, multiple information monitoring and acquisition system, and mud and water protrusion recovery system. The system's main features are that it can meet the model's simulation of the ground stress field, water pressure, and other complex environments subjected to ground stress, and water pressure gradients can be controlled. The system is characterized by high rigidity, high-pressure strength, visualization, good sealing, and expandability. Taking the water fault zone of a well in the Dazhu Mountain Tunnel of the Darui Railway as the research object, the new fault zone and surrounding rock similar materials applicable to the flow-solid coupling model test are designed using the self-developed flow-solid coupling similar materials. The system is used for model tests to reveal the spatial and temporal changes of the surrounding rock stress field and seepage field during the tunnel excavation process. The test results show that the system is stable and reliable, and the research method and results are of guiding significance to the research of the same type of underground engineering.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据