4.3 Article

Bearing Fault Feature Extraction Method Based on GA-VMD and Center Frequency

期刊

MATHEMATICAL PROBLEMS IN ENGINEERING
卷 2022, 期 -, 页码 -

出版社

HINDAWI LTD
DOI: 10.1155/2022/2058258

关键词

-

向作者/读者索取更多资源

In this paper, a feature extraction method for bearing fault signals based on genetic algorithm optimized variational mode decomposition parameters and center frequency is proposed, which demonstrates higher decomposition accuracy and recognition rate.
To promote the effect of variational mode decomposition (VMD) and further enhance the recognition performances of bearing fault signals, genetic algorithm (GA) is applied to optimize the combination of VMD parameters in this paper, and GA-VMD algorithm is put forward to improve the decomposition accuracy of VMD. In addition, combined with the center frequency, a feature extraction method based on GA-VMD and center frequency is proposed to ameliorate the difficulty of bearing fault feature extraction. Firstly, the bearing signal is decomposed into a series of intrinsic mode components (IMFs) by GA-VMD. Then, the Center Frequency of IMFs is extracted, and the recognition rate is calculated by k-nearest neighbor (KNN) algorithm. Simulation signal experiments state clearly that, compared with manual parameter setting-VMD algorithm and parameter optimization VMD algorithm based on particle swarm optimization (PSO), the decomposition result of GA-VMD has a smaller root mean square error and higher decomposition accuracy, which verifies the effectiveness of GA-VMD. The experimental results demonstrate that, by comparison with the feature extraction method based on envelope entropy, the feature extraction method based on center frequency has better inter class separability and higher mean recognition rate (the highest recognition rate of single feature is 94.5%, and in the case of multiple features, the recognition rate reaches 100% when four features are extracted) and can realize the accurate identification of different bearing fault signals.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据