4.3 Article

Modified graphene oxide nanoplates reinforced 3D printed multifunctional scaffold for bone tissue engineering

期刊

BIOMATERIALS ADVANCES
卷 134, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.msec.2021.112587

关键词

3D printing; Reduced graphene oxide; Bone tissue engineering; Polydopamine; Multifunctional

向作者/读者索取更多资源

This study developed a novel approach to fabricate mechanically customized 3D printed scaffolds with modified nanosheets reinforcement. The designed scaffold showed stem cell responsive, integrative, and pro-regenerative multi functionalities, making it a potential treatment alternative for bone tissue regeneration.
Successful regeneration of load-bearing bone defects remains a major challenge in clinical orthopaedics. Designing biologically active 3-dimensional scaffolds possessing physiological responsiveness can potentially overcome current limitations. Here, we have described a novel approach to fabricate scaffolds with modified nanosheets reinforced on mechanically customized thermoplastic polymer-based 3D printed constructs. In this article, we have developed polydopamine-reduced graphene oxide (PD-RGO) reinforced 3D printed PLA scaffold for bone tissue construction. RGO was synthesized by reduction of GO under alkaline conditions using dopamine. 3D printed polylactic acid (PLA) scaffold with defined porosity was doped with PD-RGO. The designed scaffold was studied for its physiochemical properties and human umbilical cord-derived mesenchymal stem cell (hMSC) behaviour within the scaffold. In vitro hMSC studies revealed the influence of fibre direction and nanocoating on directional cell growth and proliferation. The fabricated scaffold showed antioxidant property along with pro-angiogenic and osteoinductive potential. The designed scaffold also successfully prevented the formation of biofilm. In vivo heterotopic implantation of the differentiated hMSC loaded scaffold confirmed the biocompatibility and bio functionality of the scaffold. In summary, the designed nanoplates doped 3D printed scaffold displays stem cell responsive, integrative and pro-regenerative multi functionalities, thereby, exhibiting potential application as bone tissue regeneration treatment alternative.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据