4.6 Article

Sulfur/oxygen-doped porous carbons via NaCl-assisted thermolysis of a molecular precursor for CO2 capture

期刊

MATERIALS CHEMISTRY AND PHYSICS
卷 276, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.matchemphys.2021.125288

关键词

Microporous carbon; Molecular precursor; Surface chemistry; Template synthesis

向作者/读者索取更多资源

A novel combination of cheap and easy to synthesize molecular precursor p-toluenesulfonic acid (TsOH) and pore former NaCl was utilized for the production of sulfur/oxygen doped carbons. The addition of NaCl increases the pore development of carbons, positively influencing CO2 capture performance, especially beyond 0.4-0.5 bar pressure.
A novel combination of a cheap, readily available and easy to synthesize molecular precursor: p-toluenesulfonic acid (TsOH) and pore former NaCl was utilized for the production of sulfur/oxygen doped carbons. Dynamic and statistic adsorption capability of carbons on major coal-fired power plant flue gas components (CO2 (Carbon dioxide), Nitrogen (N2) and water vapor (H2O)) and surface chemical properties were investigated. NaCl addition increases micropore and larger pore development, but it marginally affects CO2 capture performance at low pressures due to similar pore volumes of carbons at ultramicropore (0.7 nm) range. However, dynamic adsorption experiments revealed that presence of large pores increases kinetics of adsorption. NaCl addition positively influences CO2 capture performance beyond 0.4-0.5 bar. Maximum CO2 uptake values are in the range of 0.78 mmol g-1 at 0.15 bar (298 K). CO2 uptake at low pressures (0.15 bar) at 298 K is connected to pore volume of micropores that has equal or smaller dimeter than 0.5 nm. It was demonstrated that presence of nonoxidized sulfur on carbon surface has a positive effect on CO2 adsorption at 0.15 bar (298 K and 313 K). There is no correlation found between CO2 uptake and oxygen or oxidized sulfur content, but there is a negative correlation between oxidized sulfur and CO2/N2 selectivity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据