4.7 Article

Capturing Free-Radical Polymerization by Synergetic Ab Initio Calculations and Topological Reactive Molecular Dynamics

期刊

MACROMOLECULES
卷 55, 期 5, 页码 1474-1486

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.macromol.1c01408

关键词

-

资金

  1. MIUR [PRIN 2017PHRM8X]
  2. European Research Council under the European Union [739964]
  3. CINECA Project under the ISCRA initiative [IsB21_DRHEOB]

向作者/读者索取更多资源

This study investigates the free radical polymerization of photocurable polymers using reactive classical molecular dynamics combined with a dynamical approach of the nonequilibrium molecular dynamics (D-NEMD) method. The results provide insights into the physical and topological properties of the polymer and predict its mechanical behavior. This approach offers a novel tool to describe photopolymerization processes and optimize additive manufacturing methods.
Photocurable polymers are used ubiquitously in 3D printing, coatings, adhesives, and composite fillers. In the present work, the free radical polymerization of photocurable compounds is studied using reactive classical molecular dynamics combined with a dynamical approach of the nonequilibrium molecular dynamics (D-NEMD). Different concentrations of radicals and reaction velocities are considered. The mechanical properties of the polymer resulting from 1,6-hexanediol dimethacrylate systems are characterized in terms of viscosity, diffusion constant, and activation energy, whereas the topological ones through the number of cycles (polymer loops) and cyclomatic complexity. Effects like volume shrinkage and delaying of the gel point for increasing monomer concentration are also predicted, as well as the stress-strain curve and Young's modulus. Combining ab initio, reactive molecular dynamics, and the D-NEMD method might lead to a novel and powerful tool to describe photopolymerization processes and to original routes to optimize additive manufacturing methods relying on photosensitive macromolecular systems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据