4.7 Article

Closed-Loop Recyclable Fully Bio-Based Epoxy Vitrimers from Ferulic Acid-Derived Hyperbranched Epoxy Resin

期刊

MACROMOLECULES
卷 55, 期 2, 页码 595-607

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.macromol.1c02247

关键词

-

资金

  1. National Natural Science Foundation of China [51403242, 51873233]
  2. Fundamental Research Funds for the Central Universities, South-Central University for Nationalities [CZD21006]
  3. Innovation Group of National Ethnic Affairs Commission of China [MZR20006]
  4. Key R&D Plan of Hubei Province [2020BAB077]

向作者/读者索取更多资源

This study synthesized a ferulic acid-based hyperbranched epoxy resin (FEHBP) to produce closed-loop recyclable and catalyst-free epoxy vitrimers with improved mechanical performance. The incorporation of FEHBP enhanced the tensile strength and toughness of the epoxy vitrimers through an in situ reinforcing and toughening mechanism. The hydroxyls of FEHBP catalyzed the dynamic transesterification and accelerated the reprocessing of epoxy vitrimers.
Epoxy vitrimers with dynamic covalent networks enable reprocessing and recycling of epoxy thermosets. However, achieving high mechanical performance remains a challenge. In this work, ferulic acid-based hyperbranched epoxy resin (FEHBP) was synthesized to produce closed-loop recyclable and catalyst-free epoxy vitrimers without compromising its thermal and mechanical properties. The incorporation of FEHBP with a hyperbranched topological structure improved the tensile strength, modulus, and toughness of epoxy vitrimers through an in situ reinforcing and toughening mechanism. The hydroxyls of FEHBP catalyzed the dynamic transesterification and accelerated the reprocessing of epoxy vitrimers. Thus, the obtained epoxy vitrimers demonstrated excellent weldability, malleability, and programmability. Epoxy vitrimers with 10 phr FEHBP exhibited high tensile strength (126.4 MPa), usable T-g (94 degrees C), fast stress relaxation (a relaxation time of 45 s at 140 degrees C) and a retention of tensile strength (above 88.3%) upon recycling. The degradation products were reused to produce new epoxy vitrimers under mild conditions with similar mechanical properties and thermal stability as the original epoxy vitrimers, leading to closed-loop recyclable, fully bio-based epoxy vitrimers with potential for industrial applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据