4.7 Article

Targeting oxidative stress, apoptosis, and autophagy by galangin mitigates cadmium-induced renal damage: Role of SIRT1/Nrf2 and AMPK/mTOR pathways

期刊

LIFE SCIENCES
卷 291, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.lfs.2021.120300

关键词

Galangin; Cadmium; Oxidative stress; Autophagy; Apoptosis

资金

  1. Taif University, Taif, Saudi Arabia [TURSP-2020/29]

向作者/读者索取更多资源

This study found that galangin can attenuate cadmium-induced nephrotoxicity through reducing oxidative stress and apoptosis, as well as promoting autophagy.
Background: Galangin, a bioactive flavonoid with remarkable antioxidant and anti-apoptotic actions, has demonstrated promising amelioration of experimental hepatotoxicity, cardiomyopathy, and colitis. Yet, its impact on cadmium-induced renal injury has not been explored. Herein, we aimed at exploring the potential of galangin to attenuate cadmium-induced nephrotoxicity in rats, focusing on oxidative stress, apoptosis, and autophagy. Methodology: Cadmium chloride (5 mg/kg/day) and galangin (15 mg/kg/day) were received by oral gavage and the kidney tissues were inspected using ELISA, biochemical measurements, histology, and immunohistochemistry. Key findings: Galangin attenuated cadmium-induced renal damage by diminishing the histopathological alterations alongside KIM-1, BUN, and creatinine. At the molecular level, galangin attenuated the oxidative insult by significantly lowering the lipid peroxides and NOX-1 and augmenting GSH and GPx antioxidants. It also activated the cytoprotective SIRT1/Nrf2/HO-1 pathway by significantly upregulating the protein expression of SIRT1, Nrf2, and HO-1. Consistently, galangin suppressed renal apoptotic cell death by significantly lowering the protein expression of Bax and cytochrome C and activity of caspase-3 alongside upregulating the protein expression of the anti-apoptotic Bcl-2. Additionally, galangin activated the impaired autophagy flux as seen by diminishing the accumulation of SQSTM1/p62 and increasing the protein expression of Beclin 1. Meanwhile, galangin stimulated the autophagy-linked AMPK/mTOR pathway by significantly increasing the p-AMPK/total AMPK and lowering p-mTOR/total mTOR ratios. Conclusion: Galangin mitigated cadmium-induced nephrotoxicity thanks to its promising antioxidant, antiapoptotic, and pro-autophagic effects. In perspective, galangin stimulated the SIRT1/Nrf2/HO-1 and AMPK/mTOR pathways. Hence, it may act as a complementary tool for the management of cadmium-induced renal injury.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据