4.6 Article

Hierarchically Porous ZnO/g-C3N4S-Scheme Heterojunction Photocatalyst for Efficient H2O2 Production

期刊

LANGMUIR
卷 37, 期 48, 页码 14114-14124

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.langmuir.1c02360

关键词

-

资金

  1. National Natural Science Foundation of China (NSFC) [52073223, 51932007, 51961135303, 21871217, U1905215, U1705251]

向作者/读者索取更多资源

Hierarchically porous ZnO/g-C3N4 S-scheme heterojunction photocatalysts were prepared with ZIF-8 and urea as precursors, showing high activity in photocatalytic H2O2 production. The mechanism of charge transfer and separation within the S-scheme heterojunction was studied using Kelvin probe, in situ irradiated X-ray photoelectron spectroscopy (ISI-XPS), and electron paramagnetic resonance (EPR).
The design of photocatalysts with hierarchical pore sizes is an effective method to improve mass transport, enhance light absorption, and increase specific surface area. Moreover, the construction of a heterojunction at the interface of two semiconductor photocatalysts with suitable band positions plays a crucial role in separating and transporting charge carriers. Herein, ZIF-8 and urea are used as precursors to prepare hierarchically porous ZnO/g-C3N4 S-scheme heterojunction photocatalysts through a two-step calcination method. This S-scheme hetero- junction photocatalyst shows high activity toward photocatalytic H2O2 production, which is 3.4 and 5.0 times higher than that of pure g-C3N4 and ZnO, respectively. The mechanism of charge transfer and separation within the S-scheme heterojunction is studied by Kelvin probe, in situ irradiated X-ray photoelectron spectroscopy (ISI-XPS), and electron paramagnetic resonance (EPR). This research provides an idea of designing S-scheme heterojunction photocatalysts with hierarchical pores in efficient photocatalytic hydrogen peroxide production.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据