4.6 Article

Photo-Induced Crawling Motion of Azobenzene Crystals on Modified Gold Surfaces

期刊

LANGMUIR
卷 37, 期 48, 页码 14177-14185

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.langmuir.1c02494

关键词

-

资金

  1. JSPS KAKENHI [JP20H02456, JP19K21132, JP16H04141, JP16K14069, JP17H05275]

向作者/读者索取更多资源

The study reveals that DMAB crystals exhibit different crawling velocities and shape changes on gold surfaces with different surface properties. The crystal shape and crawling speed are influenced by light intensity, surface functionalization, and surface structure.
Photo-induced crawling motion of a crystal of 3,3'dimethylazobenzene (DMAB) on gold surfaces having different surface properties and various patterns was studied. DMAB crystals crawl continuously when exposed to UV and visible lights simultaneously from different directions. On a gold surface functionalized by a thiol having a hydroxyl group at the terminal (16-hydroxy-1-hexadecanethiol (HOC16SH)), the crystals crawled with a relatively high velocity (ca. 4 mu m min(-1)), and they changed the crystal shape while keeping a distinct crystal face. On a gold surface functionalized by a thiol having an alkyl chain terminal (1-hexadecanethiol (C16SH)), the crawling was observed with a slower velocity (ca. 1.5 mu m min(-1)). However, the shape of the crystals became a droplet-like shape soon after the irradiation started, and the shape persisted during the motion. Light intensity dependence of the crawling velocity of the droplet-like crystal on this surface showed that UV light has stronger dependence for the motion than the visible light. On a substrate with a stripe pattern of alternating C16SH-modified gold and hexadecyltrimethylsilane (HDTMS)-modified glass, crystals crawled only on the surface of the C16SH-modified gold, which may be due to the wettability hysteresis at the surface. On a substrate with a stripe pattern of HOC16SH-modified gold and HDTMS-modified glass, crystals were attracted to the gold side. On a gold substrate with a periodic pattern of different height (ca. 50 nm) but having a uniform treatment with C16SH, crystals crawled up and down the steps without significant disturbance at the boundary of the step. Therefore, wettability of the surface has a greater impact on controlling the motion of the crystal than the surface structure. The present results not only unveil the crawling behavior on various surfaces but also offer a guide to controlling the motion toward applications for novel carriage vehicles to transport molecules/objects on a surface.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据