4.7 Review

A dilatant, two-layer debris flow model validated by flow density measurements at the Swiss illgraben test site

期刊

LANDSLIDES
卷 19, 期 2, 页码 265-276

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s10346-021-01733-2

关键词

Debris flow hazards; Two-layer model; Dilatancy; Streamwise density distribution; Illgraben

资金

  1. Lib4RI -Library for the Research Institute within the ETH Domain: Eawag
  2. Lib4RI -Library for the Research Institute within the ETH Domain: Empa
  3. Lib4RI -Library for the Research Institute within the ETH Domain: PSI
  4. Lib4RI -Library for the Research Institute within the ETH Domain: WSL

向作者/读者索取更多资源

The proposed debris flow model divides the muddy fluid into two parts, one bonded to solid particles forming the first layer, and the other moving independently forming the second layer. Shearing of rocky particulate material during flow induces dilatant motions, changing the solid center-of-mass position. The model is able to capture the streamwise evolution of debris flow density in time and space.
We propose a dilatant, two-layer debris flow model validated by full-scale density/saturation measurements obtained from the Swiss Illgraben test site. Like many existing models, we suppose the debris flow consists of a matrix of solid particles (rocks and boulders) that is surrounded by muddy fluid. However, we split the muddy fluid into two fractions. One part, the inter-granular fluid, is bonded to the solid matrix and fills the void space between the solid particles. The combination of solid material and inter-granular fluid forms the first layer of the debris flow. The second part of the muddy fluid is not bonded to the solid matrix and can move independently from the first layer. This free fluid forms the second layer of the debris flow. During flow the rocky particulate material is sheared which induces dilatant motions that change the location of the center-of-mass of the solid. The degree of solid shearing, as well as the amount of muddy fluid and of solid particles, leads to different flow compositions including debris flow fronts consisting of predominantly solid material, or watery debris flow tails. De-watering and the formation of muddy fluid washes can occur when the solid material deposits in the runout zone. After validating the model on two theoretical case studies, we show that the proposed model is able to capture the streamwise evolution of debris flow density in time and space for real debris flow events.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据