4.7 Article

Analysis of the effects of aryl hydrocarbon receptor expression on cancer cell invasion via three-dimensional microfluidic invasion assays

期刊

LAB ON A CHIP
卷 22, 期 2, 页码 313-325

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d1lc00854d

关键词

-

资金

  1. Natural Sciences and Engineering Research Council of Canada [RGPIN 2019-04687, CREATE 482073-16]
  2. NSERC

向作者/读者索取更多资源

The study reveals that the expression level of AHR affects the invasiveness of breast cancer cells, with AHR knockout enhancing invasive characteristics and AHR overexpression reducing invasiveness. The results suggest a potential role of AHR in regulating invasion and metastasis in breast cancer.
The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that binds to xenobiotics and activates expression of response elements to metabolize these compounds. The AHR pathway has been associated with a long list of diseases including cancer; however, it is debated whether AHR is tumorigenic or tumour-inhibiting. In particular, there are contradictory reports in the literature regarding the effects of AHR expression level on metastatic breast cancer. Here we used a 3D invasion assay called cell invasion in digital microfluidic microgel systems (CIMMS) to study the effect of AHR expression on invasion. In this study, MDA-MB-231 cells with stable knockout of AHR (AHRko) showed enhanced invasive characteristics and reduced proliferation, and cells with transient overexpression of AHR showed reduced invasiveness. Overexpression of AHR with a mutation in the DNA binding domain showed no difference in invasiveness compared to control, which suggests that the changes in invasiveness are related to the expression of AHR. CIMMS also allowed for extraction of sub-populations of invaded cells for RNA sequencing experiments. A comparison of the transcriptomes of invaded subpopulations of wild-type and AHRko cells identified 1809 genes that were differentially expressed, with enriched pathways including cell cycle, proliferation, survival, immunoproteasome activation, and activation of matrix metalloproteases. In sum, the data reported here for MDA-MB-231 cells suggests some new interpretations of the discrepancy in the literature on the role of AHR in breast cancer. We propose that the unique combination of functional discrimination with transcriptome profiling provided by CIMMS will be valuable for a wide range of mechanistic invasion-biology studies in the future.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据