4.7 Article

Learning a robust classifier for short-term traffic state prediction

期刊

KNOWLEDGE-BASED SYSTEMS
卷 242, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.knosys.2022.108368

关键词

Classification indicator system; Model optimization framework; Robust prediction model; Short-term traffic state prediction; Support vector machine

资金

  1. National Natural Science Foundation of China [62072243, 62072246, 61772273]
  2. Natural Science Foundation of Jiangsu Province, China [BK20201304]
  3. Foundation of National Defense Key Labora-tory of Science and Technology, China [JZX7Y202001SY000901]
  4. China Scholarship Council [201806840068]
  5. NSERC Discovery Grant [RGPIN-2019-04575]
  6. University of Alberta-Huawei Joint Innovation Collaboration grants, Canada [2019YFE0123800]
  7. National Key Research and Development Program of China: Key Projects of International Scientific and Technological Innovation Cooperation between Governments

向作者/读者索取更多资源

Accurate and real-time prediction of short-term traffic states is crucial in intelligent transportation systems. This study proposes a novel multiclass classification least squares twin support vector machine model (PLSTSVM) based on a robust distance, which improves the prediction performance by adjusting parameters and using an integrated classification indicator system.
Accurate and real-time prediction of short-term traffic states is a crucial research topic in modern intelligent transportation systems. However, effectively modeling traffic state predictions is difficult due to the complicated characteristics of stochastic and dynamic traffic processes. In addition, collected traffic data are typically influenced by external factors (e.g., weather, traffic jams and accidents), leading to errors and missing data. This increases the difficulty in selecting an effective method for predicting traffic conditions over time. To improve the traffic state prediction performance and alleviate the negative effect of traffic data with outliers, a novel multiclass classification least squares twin support vector machine model based on the robust L2,p-norm (0 < p & LE; 2) distance, known as PLSTSVM, was proposed. We adjusted the PLSTSVM parameters to balance the prediction accuracy and training time. To solve the optimization problem of the PLSTSVM, an iterative algorithm was developed, which has great potential for solving other optimization problems. In addition, an integrated classification indicator system based on speed, traffic volume, occupancy rate and ample degree was used, increasing the feasibility of the traffic state analysis. To improve the learning and generalization abilities of the nonlinear PLSTSVM, we combined the polynomial kernel function and the radial basis function to construct a hybrid kernel function. The results on two real traffic datasets demonstrate that our model yields better prediction performance and robustness than other competitors, which make unsatisfactory predictions. (C) 2022 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据