4.7 Article

A game-based deep reinforcement learning approach for energy-efficient computation in MEC systems

期刊

KNOWLEDGE-BASED SYSTEMS
卷 235, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.knosys.2021.107660

关键词

Edge computing; Game-learning; Computation offloading; Deep reinforcement learning; Energy-efficient

资金

  1. National Natural Science Foundation of China [62072475, 61772554]

向作者/读者索取更多资源

This paper proposes a polling callback energy-saving offloading strategy, and simulation results show that the proposed algorithm performs better than DDQN, DQN, and BCD-based optimal methods.
Many previous energy-efficient computation optimization works for mobile edge computing (MEC) systems have been based on the assumption of synchronous offloading, where all mobile devices have the same data arrival time or calculation deadline in orthogonal frequency division multiple access (OFDMA) or time division multiple access (TDMA) systems. However, the actual offloading situations are more complex than synchronous offloading following the first-come, first-served rule. In this paper, we study a polling callback energy-saving offloading strategy, that is, the arrival time of data transmission and task processing time are asynchronous. Under the constraints of task processing time, the time-sharing MEC data transmission problem is modeled as the total energy consumption minimization model. Using the semi-closed form optimization technology, energy consumption optimization is transformed into two subproblems: computation (data partition) and transmission (time division). To reduce the computational complexity of offloading computation under time-varying channel conditions, we propose a game-learning algorithm, that combines DDQN and distributed LMST with intermediate state transition (named DDQNL-IST). DDQNL-IST combines distributed LSTM and double-Q learning as part of the approximator to improve the ability of processing and predicting time intervals and delays in time series. The proposed DDQNL-IST algorithm ensures rationality and convergence. Finally, the simulation results show that our proposed algorithm performs better than the DDQN, DQN and BCD-based optimal methods. (C) 2021 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据