4.3 Article

Design, in vitro bioactivity and in vivo influence on oxidative stress and matrix metalloproteinases of bioglasses in experimental skin wound

出版社

ELSEVIER GMBH
DOI: 10.1016/j.jtemb.2021.126846

关键词

Bioglasses; Skin wounds; Oxidative stress; Matrix metalloproteinases; Histopathology

向作者/读者索取更多资源

The study synthesized and characterized three bioactive glass specimens, showing high degradation rates and fast ion releases in phosphate buffered saline. The bioactive glasses exhibited positive effects on skin healing mechanisms, such as reducing lipid peroxidation and enhancing nitric oxide and superoxide dismutase activities.
Background: The bioactive glasses (BGs) are very attractive materials increasingly used in healing skin lesions due to their antibacterial effect and stimulation of collagen deposition and angiogenesis. In this study, three specimens of bioactive glasses (BG1, BG2 and BG3) have been synthesized and characterized. Methods: In order to evaluate their in vitro bioactivity, the pH measurements, zeta potential and the concentration of Ca2+ and fluor ions released after immersion in phosphate buffered saline (PBS) followed by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy, inductively coupled plasma optical emission spectrometry (ICP-OES) and for BG1 and BG3, X-ray powder diffraction analysis, were performed. X-ray photoelectron spectroscopy (XPS) was also used for detection of different ions in the solid bioglasses before immersion in PBS. The impact of BG1 and BG3 on skin healing mechanisms was evaluated by oxidative stress and matrix metalloproteases (MMP)-2 and-9 and by histopathological analysis. Results: The results have shown that all the BGs tested are characterized by a very high degradation rate and a very fast Ca2+, fluor and boron releases and displayed changed surface morphology at SEM, after 7 and 14 days of immersion in PBS. In addition, BG1 and BG3 reduced in vivo the lipid peroxidation, increased the nitric oxide, especially at 14 days and improved superoxide dismutase activity, mainly in BG1 treated animals. In parallel, both BG1 and BG3, diminished MMP-9 at 14 days and increased the proportion of normal collagen in the bed of the wound, particularly BG3. Conclusion: These results suggested that due to the antioxidant and anti-inflammatory properties of components released from BGs and regulatory properties on MMPs activities, BGs can exert beneficial effects in wound healing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据