4.7 Article

Probing the buckling of pressurized spherical shells

期刊

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jmps.2021.104545

关键词

Spherical shells; Buckling; Imperfection sensitivity; Indentation

资金

  1. Federal Commission for Scholarships for Foreign Students (FCS) , Switzerland through a Swiss Government Excellence Scholarship [2019.0619]

向作者/读者索取更多资源

This study focuses on the mechanical response of pressurized spherical shells with a single dimple-like defect to a point probe, characterizing the nonlinear force-indentation response at different pressurization levels through experiments, finite element modeling, and classic shell theory. The critical buckling pressure of the shell can be inferred non-destructively by tracking the maxima of the indentation force-displacement curves, with the effectiveness of probing influenced by the indentation angle. The study also quantifies the characteristic length associated with localized deformation using FEM simulations and shallow shell theory, demonstrating the limitations of applying probing as a non-destructive technique to assess the stability of spherical shells.
The prediction of the critical buckling conditions of shell structures is plagued by imperfection sensitivity. Non-destructive testing through point-load probing has been recently proposed to map the stability landscape of cylindrical shells. However, the counterpart procedure for spherical shells is still debatable. Here, we focus on the mechanical response of pressurized spherical shells containing a single dimple-like defect to a point probe. Combining experiments, finite element modeling, and existing results from classic shell theory, we characterize the nonlinear force-indentation response of imperfect shells at different pressurization levels. From these curves, we seek to identify the critical buckling pressure of the shell. In particular, the indentation angle is varied systematically to examine its effect on the probing efficacy. We find that the critical buckling point can be inferred non-destructively by tracking the maxima of the indentation force-displacement curves, if the probe is implemented sufficiently close to the defect. When probing further away from the defect, the test fails in predicting the onset of buckling since the deformation due to indentation remains localized in the vicinity of the probe. Using FEM simulations and shallow shell theory, we quantify the characteristic length associated with this localized deformation, both in the linear and nonlinear regimes. Our results demonstrate the limiting conditions of applicability for the usage of probing as a non-destructive technique to assess the stability of spherical shells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据