4.6 Article

Additively manufactured biomorphic cellular structures inspired by wood microstructure

出版社

ELSEVIER
DOI: 10.1016/j.jmbbm.2021.104729

关键词

Biomimetics; Biomorphic cellular structures; Additive manufacturing; Finite element analysis; Energy absorption; Wood microstructure

向作者/读者索取更多资源

This study investigated the mechanical behavior and energy absorption capabilities of novel Biomorphic Cellular Structures inspired by the microstructure of cedar, oak, and palm wood using Additive Manufacturing technology, experimental testing, and Finite Element Analysis. The results showed that cedar-bcs provided the best mechanical performance compared to the other two biomorphic cellular structures.
Biological cellular materials are an important area of research in Additive manufacturing due to their intricate lightweight designs and forms with high energy absorption characteristics under compressive loading. In this study, we utilize the capability of Additive Manufacturing (AM) technology, experimental testing, and Finite Element Analysis (FEA) to design and investigate the mechanical behavior and energy absorption capabilities of novel Biomorphic Cellular Structures (BCS) inspired by the microstructure of cedar, oak, and palm wood. A comparative study of the elastic properties of the biomorphic cellular structures is carried out. The deformation and failure modes of the different cells were studied, and their performance was also discussed. Nonlinear finite element numerical simulation conducted has shown high accuracy in the prediction of deformation of the samples manufactured using additive manufacturing. The results show that cedar-bcs provides the best mechanical performance compared to the other two biomorphic cellular structures which could be as a result of its more vertical cell wall orientation, nevertheless, the palm-bcs showed a step-wise deformation and improved collapse stress. The obtained results suggest that the unique opportunities offered by the proposed experimental method, in combination with computational models, could serve to provide novel important information for the rational design of additively manufactured porous biomorphic materials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据