4.6 Article

A Baseline Kinetic Study of Co-Free Layered Li1+x(Ni0.5Mn0.5)1-xO2 Positive Electrode Materials for Lithium-Ion Batteries

期刊

出版社

ELECTROCHEMICAL SOC INC
DOI: 10.1149/1945-7111/ac3157

关键词

Batteries; Lithium; Lithium ion diffusion; solid state diffusion; Atlung method for intercalant Diffusion; LiNi0.5Mn0; materials optimization

资金

  1. NSERC
  2. Tesla Canada
  3. Vidyasirimedhi Institute of Science and Technology (VISTEC)
  4. Walter C. Sumner Foundation

向作者/读者索取更多资源

The research demonstrated that Li-ion kinetics can be enhanced by reducing the Ni atom content in the Li layer, and reducing cation mixing can be achieved by increasing excess Li content or heating temperature. Additionally, grain boundary diffusion plays a crucial role in these materials.
Variations of Li chemical diffusion coefficient (D-c) with voltage in a series of Co-free Li1+x(Ni0.5Mn0.5)(1-x)O-2, 0 <= x <= 0.12, materials were systematically investigated using the recently developed Atlung Method for Intercalant Diffusion. The effects of primary and secondary particle sizes, excess Li content, heating temperature, and synthesis atmospheres on D-c were measured. Li-ion kinetics can be enhanced by an order of magnitude by lowering the amount of Ni atoms in the Li layers (cation mixing) from 10% to 4%. Decreasing cation mixing can be accomplished by either increasing the excess Li content or heating temperature. When cycled to 4.6 V, higher specific capacities were obtained, but with a penalty to D-c due to transition metal migration to the Li layers. The primary particles control the Li diffusion length in these materials, regardless of the secondary particle size indicating that grain boundary diffusion must be very rapid. The general trends observed in this work are of great value for the development of higher Mn-containing, Co-free materials. It should be possible to increase energy/power density by making large secondary particles, composed of small primary particles to minimize the solid-state diffusion length while maximizing grain boundary diffusion. (C) 2021 The Author(s). Published on behalf of The Electrochemical Society by IOP Publishing Limited. This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 License (CC BY, http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse of the work in any medium, provided the original work is properly cited.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据