4.8 Article

Nanopore Current Enhancements Lack Protein Charge Dependence and Elucidate Maximum Unfolding at Protein's Isoelectric Point

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 144, 期 7, 页码 3063-3073

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jacs.1c11540

关键词

-

资金

  1. Human Frontier Science Program [RGY0066/2018]

向作者/读者索取更多资源

This study presents a thorough investigation of protein sensing under low electrolyte conditions. The unfolding of proteins was found to be correlated with their isoelectric point and sensitive to the applied voltage and pH. The different forces acting on the protein movement also play a critical role.
Protein sequencing, as well as protein fingerprinting, has gained tremendous attention in the electrical sensing realm of solid-state nanopores and is challenging due to fast translocations and the use of high molar electrolytes. Despite providing an appreciable signal-to-noise ratio, high electrolyte concentrations can have adverse effects on the native protein structure. Herein, we present a thorough investigation of low electrolyte sensing conditions across a broad pH and voltage range generating conductive pulses (CPs) irrespective of protein net charge. We used Cas9 as the model protein and demonstrated that unfolding is noncooperative, represented by the gradual elongation or stretching of the protein, and sensitive to both the applied voltage and pH (i.e., charge state). The magnitude of unfolding and the isoelectric point (pI) of Cas9 was found to be correlated and a critical factor in our experiments. Electroosmotic flow (EOF) was always aligned with the transit direction, whereas electrophoretic force (EPF) was either reinforcing (pH < pI) or opposing (pH > pI) the protein's movement, which led to slower translocations at higher pH values. Further exploration of higher pH values led to slowing down of protein with > 30% of the population being slower than 0.5 ms. Our results would be critical for protein sensing at very low electrolytes and to retard their translocation speed without resorting to high-bandwidth equipment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据