4.8 Article

Electrochemical Reduction of Gaseous Nitrogen Oxides on Transition Metals at Ambient Conditions

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 144, 期 3, 页码 1258-1266

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jacs.1c10535

关键词

-

资金

  1. U.S. Department of Energy [DE-FE0031910]

向作者/读者索取更多资源

This research demonstrates a method of reducing gaseous NOx emissions at ambient temperatures through an electrochemical pathway. The study found that copper has a high selectivity towards NH3 formation, and a high NO coverage facilitates the N-N coupling reaction. This work provides a promising avenue for reducing gaseous NOx emissions at ambient conditions using renewable electricity.
Mitigating nitrogen oxide (NOx) emissions is critical to tackle global warming and improve air quality. Conventional NOx abatement technologies for emission control suffer from a low efficiency at near ambient temperatures. Herein, we show an electrochemical pathway to reduce gaseous NOx that can be conducted at high reaction rates (400 mA cm(-1)) under ambient conditions. Various transition metals are evaluated for electrochemical reduction of NO and N2O to reveal the role of electrocatalyst in determining the product selectivity. Specifically, Cu is highly selective toward NH3 formation with >80% Faradaic efficiency in NO electroreduction. Furthermore, the partial pressure study of NO electroreduction revealed that a high NO coverage facilitates the N-N coupling reaction. In acidic electrolytes, the formation of NH3 is greatly favored, whereas the N-2 production is suppressed. Additional mechanistic studies were conducted by using flow electrochemical mass spectrometry to gain further insights into reaction pathways. This work provides a promising avenue toward abating gaseous NOx emissions at ambient conditions by using renewable electricity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据