4.4 Article

Interpretable XGBoost-SHAP Machine-Learning Model for Shear Strength Prediction of Squat RC Walls

期刊

JOURNAL OF STRUCTURAL ENGINEERING
卷 147, 期 11, 页码 -

出版社

ASCE-AMER SOC CIVIL ENGINEERS
DOI: 10.1061/(ASCE)ST.1943-541X.0003115

关键词

Machine-learning (ML); Interpretation; eXtreme Gradient Boosting (XGBoost); Feature importance; SHapley Additive exPlanations (SHAP); Shear strength; Squat RC walls

资金

  1. National Natural Science Foundation of China [52078119]

向作者/读者索取更多资源

In this study, an advanced machine learning model was trained and interpreted for estimating the shear strengths of squat RC walls, utilizing a database of 434 samples. The model strategically combined the XGBoost algorithm for predictive modeling and the SHAP algorithm for analyzing factor importance. This setup achieved a high level of accuracy in shear strength estimation and provided physical and quantitative interpretations of the input-output dependencies.
RC shear walls are commonly used as lateral load-resisting elements in seismic regions, and the estimation of their shear strengths can become simultaneously design-critical and complex when they have so-called squat geometries, i.e., height-to-length ratios less than two. This paper presents a study on the training and interpretation of an advanced machine-learning model that strategically combines two algorithms for the said purpose. To train the model, a comprehensive shear strength database of 434 samples of squat RC walls is utilized. First, the eXtreme Gradient Boosting (XGBoost) algorithm is used to establish a predictive model for estimating the shear strength, wherein 70% and 30% of the data are respectively used for training and validation. This effort resulted in an approximately 97% validation accuracy, which well exceeds current mechanics-based/semiempirical models. Second, the SHapley Additive exPlanations (SHAP) algorithm is used to estimate the relative importance of the factors affecting XGBoost's shear strength estimates. This step thus enabled physical and quantitative interpretations of the input-output dependencies, which are nominally hidden in conventional machine-learning approaches. Through this setup, several squat wall attributes are identified as being critical in shear strength estimates.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据