4.7 Article

Structural health monitoring under environmental and operational variations using MCD prediction error

期刊

JOURNAL OF SOUND AND VIBRATION
卷 512, 期 -, 页码 -

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jsv.2021.116370

关键词

Structural health monitoring; Minimum co-variance determinant; C-step algorithm; Variational mode decomposition; Recurrent neural network

向作者/读者索取更多资源

This paper proposes a novel technique for detecting damage effects on structural frequency signals using VMD, MCD, and RNN. By preprocessing signals, learning Mahalanobis distance calculation rules, and training an RNN on healthy state signals, the method can effectively monitor the condition of structures in the long term, as validated in the experimental example of the Z24 bridge.
This paper proposes a novel technique that aims at detecting the effect of damage on structural frequency signals as bad outliers. To this end, a procedure is developed based on the Variational Mode Decomposition (VMD), Minimum Covariance Determinant (MCD), and Recurrent Neural Network (RNN) with Bi-directional Long-Short Term Memory (BiLSTM) cells. The VMD is first used in a pre-processing stage to denoise the signals and remove the seasonal patterns in them. Then, the proposed method seeks to learn the rules behind calculation of the Mahalanobis distances of the points from their distribution, using the parameters obtained from the MCD algorithm, through training an RNN on signals obtained from the inferior state of the structure (healthy state). It will be shown that, since the rule behind the effect of damage on the Mahalanobis distances has not been learnt by the trained RNN, the prediction errors of these values will increase significantly as soon as damage occurs using the data obtained from the posterior state of the structure (including damage). The performance of the proposed method is first tested on a numerical example and further validated through solving an experimental example of the Z24 bridge. Moreover, the proposed method is compared against a PCA-based method. The results demonstrate the superiority of the proposed method in long-term condition monitoring of civil infrastructures. The proposed method is an output-only condition monitoring method that requires only a couple of lowest structural natural frequency signals measured over a long-term monitoring of the structure. Therefore, it is recommended for cases when the measurements from the EOV are not available. Also the proposed method can be used along with other output-only or input-out methods to either improve or confirm the validity of their results.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据