4.8 Article

Hydrogen starvation mitigation strategies during the start-up of proton exchange membrane fuel cell stack

期刊

JOURNAL OF POWER SOURCES
卷 520, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jpowsour.2021.230809

关键词

Proton exchange membrane fuel cell; Dual-path hydrogen supply; Fuel starvation; Start-up loading strategy; Temperature uniformity

资金

  1. National Natural Science Foundation of China [21776095]
  2. Guangzhou Science and Technology Project [201804020048]
  3. Guangdong key laboratory of Clean energy technology [2008A060301002]

向作者/读者索取更多资源

The introduction of a dual-path hydrogen supply strategy improves hydrogen diffusion within the fuel cell stack, while optimized start-up loading strategies enhance stack voltage and single-cell temperature uniformity.
Hydrogen starvation during start-up loading and rapid load change is a severe threat to the life and durability of proton exchange membrane fuel cell. To mitigate and eliminate hydrogen starvation during start-up loading, a dual-path hydrogen supply strategy is proposed to improve hydrogen diffusion within the stack. Based on constant loading rate continuous loading, two optimized start-up strategies with variable loading rates are presented. Stack voltage, stack average temperature, and single-cell temperature uniformity under different startup loading strategies are discussed in detail. Experimental results show that at the end of continuous loading with a loading rate of 0.67 A/s, the peak voltage uniformity rate of dual-path hydrogen supply mode is 12.67% lower than that of dead-ended anode mode. In start-up loading from open-circuit state (0 A) to nominal state (40 A), single-cell temperature uniformity index has a maximum reduction of 0.136 degrees C compared to dead-ended anode mode. Besides, the combination of dual-path hydrogen supply and gradual-decreasing loading rate eliminates voltage overshoot during start-up loading, and reduces the single-cell temperature uniformity index by a maximum of 15.8%. Results indicate that the proposed strategies can mitigate hydrogen starvation, and improve the stability of stack voltage and the temperature uniformity of single cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据