4.8 Article

An innovative model for biofilm-based microfluidic microbial fuel cells

期刊

JOURNAL OF POWER SOURCES
卷 521, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jpowsour.2021.230940

关键词

Microfluidic microbial fuel cell; Numerical model; Multiple physical fields; Parametric analysis; Energy efficiency

资金

  1. National Natural Science Foundation of China [2021NSFC52175081]
  2. Open Foundation of Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials [2020GXYSOF13]

向作者/读者索取更多资源

Microfluidic microbial fuel cells exhibit higher performance and energy efficiency compared to traditional ones due to their co-laminar flow characteristic and micro-scale structure. A three-dimensional numerical model was developed and validated to investigate the effects of various parameters on cell performance. Simulation results showed the non-linear performance trend and substrate inhibition phenomenon in microfluidic microbial fuel cells.
Compared with traditional microbial fuel cells, the microfluidic microbial fuel cells have higher performance and energy efficiency due to their co-laminar flow characteristic and micro-scale structure. However, there are very few numerical studies on microfluidic microbial fuel cells, which makes it difficult to study the operating mechanism. In this study, a three-dimensional numerical model is developed to characterize and predict the comprehensive performance of a biofilm-based Y-typed microfluidic microbial fuel cell. Multiple physical fields, containing the bioelectrochemical reaction kinetics, mass transport, hydrodynamics and thermal equilibrium, are coupled in this model to investigate the effects of various parameters on cell performance. The model reliability is validated through the previous experiment. Simulation results reveal the non-linear performance trend of microfluidic microbial fuel cells with the augment of temperature. In addition, high fuel concentration can cause the substrate inhibition phenomenon and affect bacterial activity. Model applicability for different parametric analyses is emphasized by exploring the effect of ionic strength on cell performance. Finally, considering the catholyte diffusion, optimization strategies for energy efficiency are presented. The proposed numerical model can be helpful for the experimental guidance and optimal design of microfluidic microbial fuel cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据