4.8 Article

Conducting polymer ink for flexible and printable micro-supercapacitors with greatly-enhanced rate capability

期刊

JOURNAL OF POWER SOURCES
卷 513, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jpowsour.2021.230555

关键词

Polyaniline ink; High rate capability; Printable device; Electrochemical energy storage; Micro-supercapacitor

资金

  1. National Natural Science Foundation of China [51977185, 51972277]
  2. Sichuan Science and Technology Program [20ZDYF2478, 20ZDYF2833, 21ZDYF3951]

向作者/读者索取更多资源

An air-stable, easy-fabricating and rapid electron-transferring polyaniline ink has been developed, significantly improving the rate capability of the ink and producing large-scale printable MSCs with excellent mechanics-electrochemistry stability.
Conducting polymer ink holds great promise for wearable, flexible, and printable high-power-density microsupercapacitors (MSCs) but chronically suffers from the poor rate capability ascribing to naturally electron-blocked transferring. Herein, we devise an air-stable, easy-fabricating and rapid electron-transferring polyaniline ink by embedding conductive carboxylic multi-walled carbon nanotubes (C-MWCNTs) networks into polyaniline nanosheets. Due to the optimized electron-transferring kinetics, the rate capability of polyaniline ink is significantly increased by 73.7%. Additionally, the large-scale printable MSCs based on this ink deliver remarkable energy density of 2.6 mWh cm(-3), large areal capacitance of 45.4 mF cm(-2) and excellent mechanics-electrochemistry stability with 84.6% capacitance retention against 1000 consecutive bending cycles. Evidently, this work provides the polyaniline ink for large-scale, printable, and flexible MSCs, which can underpin the next generation printed electronics in the approaching era of Internet of Things.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据