4.6 Article

TRPV1 in arteries enables a rapid myogenic tone

期刊

JOURNAL OF PHYSIOLOGY-LONDON
卷 600, 期 7, 页码 1651-1666

出版社

WILEY
DOI: 10.1113/JP281873

关键词

blood pressure; capsaicin; myogenic tone; TRPV1; vascular smooth muscle

资金

  1. National Heart, Lung, And Blood Institute of the National Institutes of Health [R01 HL155979, R01 HL146169]
  2. National Institute of Diabetes and Digestive and Kidney Diseases [U01 DK101040]
  3. Hungarian Research Fund [OTKA K116940]
  4. European Union
  5. European Regional Development Fund
  6. Gedeon Richter Talentum Foundation (Hungary, Budapest)
  7. [GINOP-2.3.2-15-2016-00043]
  8. [GINOP-2.3.2-15-2016-00050]

向作者/读者索取更多资源

Arterioles maintain blood flow by adjusting their diameter in response to changes in local blood pressure, and TRPV1 plays a critical role in this process.
Arterioles maintain blow flow by adjusting their diameter in response to changes in local blood pressure. In this process called the myogenic response, a vascular smooth muscle mechanosensor controls tone predominantly through altering the membrane potential. In general, myogenic responses occur slowly (minutes). In the heart and skeletal muscle, however, tone is activated rapidly (tens of seconds) and terminated by brief (100 ms) arterial constrictions. Previously, we identified extensive expression of TRPV1 in the smooth muscle of arterioles supplying skeletal muscle, heart and fat. Here we reveal a critical role for TRPV1 in the rapid myogenic tone of these tissues. TRPV1 antagonists dilated skeletal muscle arterioles in vitro and in vivo, increased coronary flow in isolated hearts, and transiently decreased blood pressure. All of these pharmacologic effects were abolished by genetic disruption of TRPV1. Stretch of isolated vascular smooth muscle cells or raised intravascular pressure in arteries triggered Ca2+ signalling and vasoconstriction. The majority of these stretch-responses were TRPV1-mediated, with the remaining tone being inhibited by the TRPM4 antagonist, 9-phenantrol. Notably, tone developed more quickly in arteries from wild-type compared with TRPV1-null mice. Furthermore, the immediate vasodilation following brief constriction of arterioles depended on TRPV1, consistent with a rapid deactivation of TRPV1. Pharmacologic experiments revealed that membrane stretch activates phospholipase C/protein kinase C signalling combined with heat to activate TRPV1, and in turn, L-type Ca2+ channels. These results suggest a critical role, for TRPV1 in the dynamic regulation of myogenic tone and blood flow in the heart and skeletal muscle. Key points We explored the physiological role of TRPV1 in vascular smooth muscle. TRPV1 antagonists dilated skeletal muscle arterioles both ex vivo and in vivo, increased coronary perfusion and decreased systemic blood pressure. Stretch of arteriolar myocytes and increases in intraluminal pressure in arteries triggered rapid Ca2+ signalling and vasoconstriction respectively. Pharmacologic and/or genetic disruption of TRPV1 significantly inhibited the magnitude and rate of these responses. Furthermore, disrupting TRPV1 blunted the rapid vasodilation evoked by arterial constriction. Pharmacological experiments identified key roles for phospholipase C and protein kinase C, combined with temperature, in TRPV1-dependent arterial tone. These results show that TRPV1 in arteriolar myocytes dynamically regulates myogenic tone and blood flow in the heart and skeletal muscle.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据