4.4 Article

Wave-packet continuum discretisation for nucleon-nucleon scattering predictions

出版社

IOP Publishing Ltd
DOI: 10.1088/1361-6471/ac3cfd

关键词

nucleon-nucleon scattering; wave-packet continuum discretization; chiral effective field theory

资金

  1. European Research Council (ERC) under the European Union [758027]
  2. Swedish Research Council [2017-04234]
  3. Swedish Research Council [2017-04234] Funding Source: Swedish Research Council
  4. European Research Council (ERC) [758027] Funding Source: European Research Council (ERC)

向作者/读者索取更多资源

In this paper, the efficiency, precision, and accuracy of computing elastic nucleon-nucleon (NN) scattering amplitudes with the wave-packet continuum discretisation method (WPCD) are analyzed. The results show that WPCD is a promising method for computationally efficient calculations of NN scattering amplitudes, with the potential for further improvement in accuracy by increasing the number of wave-packets.
In this paper we analyse the efficiency, precision, and accuracy of computing elastic nucleon-nucleon (NN) scattering amplitudes with the wave-packet continuum discretisation method (WPCD). This method provides approximate scattering solutions at multiple scattering energies simultaneously. We therefore utilise a graphics processing unit to explore the benefits of this inherent parallelism. From a theoretical perspective, the WPCD method promises a speedup compared to a standard matrix-inversion method. We use the chiral NNLOopt interaction to demonstrate that WPCD enables efficient computation of NN scattering amplitudes provided one can tolerate an averaged method error of 1-5 mb in the total cross section at scattering energies 0-350 MeV in the laboratory frame of reference. Considering only scattering energies similar to 40-350 MeV, we find a smaller method error of less than or similar to 1-2 mb. By increasing the number of wave-packets we can further reduce the overall method error. However, the parallel leverage of the WPCD method will be offset by the increased size of the resulting discretisation mesh. In practice, a GPU-implementation is mainly advantageous for matrices that fit in the fast on-chip shared memory. We find that WPCD is a promising method for computationally efficient, statistical analyses of nuclear interactions from effective field theory, where we can utilise Bayesian inference methods to incorporate relevant uncertainties.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据