4.6 Article

In Situ Synthesis of Monolithic Cu2O-CuO/Cu Catalysts for Effective Ozone Decomposition

期刊

JOURNAL OF PHYSICAL CHEMISTRY C
卷 -, 期 -, 页码 -

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpcc.1c10208

关键词

-

资金

  1. Chengdu Science and Technology Program [2019-YF05-01833-SN]
  2. National Key R & D Program of China [2016YFC0207100]

向作者/读者索取更多资源

In this study, monolithic Cu2O-CuO/Cu catalysts were prepared by in situ thermal oxidizing-reducing copper foam. The obtained catalyst exhibited high catalytic activity towards O-3 removal, which can be attributed to the generated Cu+/Cu2+ redox couples, the donor/acceptor-type point defects, and the Cu2O-CuO p-p heterojunction. This research is of great importance for rapid, controllable, and productive O-3 removal applications.
Nowadays, ozone (O-3) has become a worldwide pollutant, and it is challenging to prepare monolithic O-3 decomposition catalysts substituting the conventional complicated process of adhering catalyst powders onto porous substrates. Herein, monolithic Cu2O-CuO/Cu catalysts are obtained facilely by in situ thermal oxidizing-reducing copper foam. After optimization, the CuO nanowires (NWs) are first produced by annealing Cu foam in O-2 at 400 degrees C for 2 h and then the NW surface is reduced into Cu2O by annealing in Ar/H-2 at 350 degrees C for 2 h. The obtained Cu2O-CuO/Cu monolithic catalyst exhibits high catalytic activity to 20 ppm O-3, maintaining 100% at a space velocity of 11,000 h(-1) and even about 94% at 38,000 h(-1). The catalytic ability toward O-3 can be attributed to the generated Cu+/Cu2+ redox couples, the donor/acceptor-type point defects, and the Cu2O-CuO p-p heterojunction. This demonstrates the successful and convenient preparation of the monolithic catalyst for rapid, controllable, and productive O-3 removal applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据