4.7 Article

Metabolic reprogramming mediates hippocampal microglial M1 polarization in response to surgical trauma causing perioperative neurocognitive disorders

期刊

JOURNAL OF NEUROINFLAMMATION
卷 18, 期 1, 页码 -

出版社

BMC
DOI: 10.1186/s12974-021-02318-5

关键词

Microglial polarization; Neuroinflammation; Metabolic reprogramming; Perioperative neurocognitive disorders (PNDs)

资金

  1. National Natural Science Foundation of China [81571035]
  2. Shanghai Jiao Tong University Biomedical Engineering Cross Research Foundation [YG2015MS15]

向作者/读者索取更多资源

Surgical trauma induces metabolic reprogramming in the hippocampus, leading to activation of microglial M1 polarization and subsequent neuroinflammation and cognitive impairment. Inhibition of glycolysis alleviates the increase of M1 phenotype and pro-inflammatory mediators, and ameliorates cognitive deficits caused by surgical trauma. Manipulating microglial metabolism could be a potential therapeutic strategy for treating perioperative neurocognitive disorders.
Background Microglial polarization toward pro-inflammatory M1 phenotype are major contributors to the development of perioperative neurocognitive disorders (PNDs). Metabolic reprogramming plays an important role in regulating microglial polarization. We therefore hypothesized that surgical trauma can activate microglial M1 polarization by metabolic reprogramming to induce hippocampal neuroinflammation and subsequent postoperative cognitive impairment. Methods We used aged mice to establish a model of PNDs, and investigated whether surgical trauma induced metabolic reprograming in hippocampus using PET/CT and GC/TOF-MS based metabolomic analysis. We then determined the effect of the glycolytic inhibitor 2-deoxy-d-glucose (2-DG) on hippocampal microglial M1 polarization, neuroinflammation, and cognitive function at 3 d after surgery. Results We found that surgery group had less context-related freezing time than either control or anesthesia group (P < 0.05) without significant difference in tone-related freezing time (P > 0.05). The level of Iba-1 fluorescence intensity in hippocampus were significantly increased in surgery group than that in control group (P < 0.05) accompanied by activated morphological changes of microglia and increased expression of iNOS/CD86 (M1 marker) in enriched microglia from hippocampus (P < 0.05). PET/CT and metabolomics analysis indicated that surgical trauma provoked the metabolic reprogramming from oxidative phosphorylation to glycolysis in hippocampus. Inhibition of glycolysis by 2-DG significantly alleviated the surgical trauma induced increase of M1 (CD86(+)CD206(-)) phenotype in enriched microglia from hippocampus and up-regulation of pro-inflammatory mediators (IL-1 beta and IL-6) expression in hippocampus. Furthermore, glycolytic inhibition by 2-DG ameliorated the hippocampus dependent cognitive deficit caused by surgical trauma. Conclusions Metabolic reprogramming is crucial for regulating hippocampal microglial M1 polarization and neuroinflammation in PNDs. Manipulating microglial metabolism might provide a valuable therapeutic strategy for treating PNDs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据