4.6 Article

Design, synthesis, in vitro and in silico biological assays of new quinazolinone-2-thio-metronidazole derivatives

期刊

JOURNAL OF MOLECULAR STRUCTURE
卷 1244, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.molstruc.2021.130889

关键词

Quinazolinone; metronidazole; carbonic anhydrase; cholinesterases; molecular docking; enzyme inhibition

向作者/读者索取更多资源

A new series of quinazolinone-2-thio-metronidazole derivatives were synthesized and tested for their inhibitory activities against metabolic enzymes. The results showed promising inhibitory effects on CA enzymes, cholinesterase enzymes, and alpha-glucosidase. Molecular modeling was used to study the interaction modes of the most potent compounds.
A new series of quinazolinone-2-thio-metronidazole derivatives 9a-o was designed, synthesized and assayed for their activities against metabolic enzymes human carbonic anhydrase I and II (hCAs I and II), acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and alpha-glucosidase. The results indicated that all the synthesized compounds exhibited excellent inhibitory activities against mentioned enzymes as compared with standard inhibitors. Representatively, the most potent compound against CA enzymes, 4-fluorophenyl derivative 9i , was 4 and 7-times more potent than standard inhibitor acetazolamide against hCA I and II, respectively; 4-fluorobenzyl derivative 9m as the most potent compound against cholinesterase enzymes, was around 11 and 21-times more potent than standard inhibitor tacrine against AChE and BChE, respectively; the most active alpha-glucosidase inhibitor 9h with 4-methoxyphenyl moiety was 5-times more active that acarbose as standard inhibitor. Furthermore, in order to study interaction modes of the most potent compounds in the active site of their related enzymes, molecular modeling was performed. Druglikeness, ADME, and toxicity profile of the compounds 9i, 9m , and 9h were also predicted. (C) 2021 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据