4.7 Article

Influence of carbonate impurities on smartwater effect: Evaluation of wettability alteration process by geochemical simulation

期刊

JOURNAL OF MOLECULAR LIQUIDS
卷 340, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.molliq.2021.117165

关键词

Triple-layer surface complexation model; Zeta potential; Smartwater; Carbonate impurities; Disjoining pressure; Adhesion force

向作者/读者索取更多资源

The study evaluates the effect of impurities (dolomite and anhydrite) in natural carbonate on wettability alteration using a surface complexation model, thermodynamic equilibrium model, and extended DLVO theory. The results show that brine with SO42- ions leads to the highest water-wet condition, followed by smartwater and brine with Ca2+ or Mg2+ ions, while de-ionic (DI) water is unfavorable for wettability alteration.
Low salinity water flooding (LSWF) has been considered as a promising technique for enhanced oil recovery (EOR). The wettability alteration towards a more water-wet state is recognised as the main mechanism for the positive LSWF effect. Electrokinetic interactions occurring at crude oil/brine and rock/brine interfaces affect the wettability alteration. Most of the studies reported in the existing knowledge considered synthetic calcite to understand the electrokinetics of natural carbonate with brines. The mineral impurities present in natural carbonate could influence the electrokinetics and subsequently wettability alteration. In this study, the surface complexation model, thermodynamic equilibrium model, and extended Derjaguin-Landau-Verwey-Overbeek (DLVO) theory were combined to evaluate the effect of impurities (dolomite and anhydrite) in natural carbonate on wettability alteration. The surface complexation modelling parameters were first estimated by fitting the calculated zeta potential to that of measured value in various brines and then validated in smartwater. The thermodynamic equilibrium of impurities is largely insensitive to crude oil/brine interface properties. However, the calculated carbonate/brine surface or zeta potential changed from positive to negative with anhydrite equilibrium in the brines containing Ca2+ or Mg2+ ions. The attractive or repulsive forces between crude oil and carbonate were estimated from disjoining pressure using extended DLVO theory and compared with measured adhesion forces. The computed disjoining pressure was used as an indicator to evaluate wettability alteration. It is found that brine with SO42- ions can result in highest water-wet condition, followed by smartwater (brine with Ca2+, Mg2+, and SO42-) and brine with either Ca2+ ions or Mg2+ ions. The de-ionic (DI) water is unfavourable for wettability alteration. The effect of impurities equilibrium and the crude oil surface site densities on the disjoining pressure were also discussed. (C) 2021 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据