4.7 Article

Self-crosslinking of bromomethylated 6FDA-DAM polyimide for gas separations

期刊

JOURNAL OF MEMBRANE SCIENCE
卷 636, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.memsci.2021.119534

关键词

Gas separation; Bromomethylated-polyimide; Crosslinking reaction; Plasticization resistance

资金

  1. Na-tional Natural Science Foundation of China [U1510123, 21603068]
  2. National Natural Science Foundation of China [21978321]

向作者/读者索取更多资源

A high-performance crosslinked brominated 6FDA-based polyimide membrane was developed by tuning the permeability and selectivity through introducing bromine atoms into the polyimide structure. The crosslinking reaction greatly stabilized the membrane performance against plasticization under high CO2 feed pressure. This study provides a facile approach for the preparation of high-performance gas separation polymeric membranes with enhanced plasticization resistance.
The CO2-induced plasticization effects impose detrimental effects on polymeric membranes separation performance. To address this issue, a high-performance crosslinked brominated 6FDA-based polyimide (BMPI) is developed in this work, exhibiting highly suppressed plasticizing effects. The permeability and selectivity of polyimide precursor membranes are tuned by introducing bromine atoms into the polyimide structure, creating a best performing membrane with bromination degree of 60%. The membrane CO2 permeability reaches 395 Barrer, and the selectivity of CO2/CH4 increases from 22.0 for a non-brominated analogue to 26.0. The debromination induced crosslinked BMPI membranes are achieved upon thermal treatment within the temperature range of 150 degrees C-350 degrees C with varied crosslinking degree, resulting in large differences for the membrane separation performance. The completely crosslinked BMPI treated at 350 degrees C for 10 h demonstrates high CO2 permeability of 483.6 Barrer and the CO2/CH4 selectivity of 26.0. Most importantly, the crosslinking reaction greatly stabilizes the membrane performance against plasticization under high CO2 feed pressure. Compared with the non-crosslinked membranes with a plasticizing pressure of 150 psia, the plasticization for the crosslinked membrane occurs at high CO2 pressure of 600 psia. This study provides a facile approach for the preparation of high-performance gas separation polymeric membranes with enhanced plasticization resistance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据