4.7 Article

In-situ formation of asymmetric thin-film, mixed-matrix membranes with ZIF-8 in dual-functional imidazole-based comb copolymer for high-performance CO2 capture

期刊

JOURNAL OF MEMBRANE SCIENCE
卷 642, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.memsci.2021.119913

关键词

Carbon dioxide; Comb copolymer; Molecular dynamic simulation; Mixed-matrix membranes; Thin film

资金

  1. National Research Foundation (NRF) of South Korea - Ministry of Science and ICT, Republic of Korea [NRF-2020K1A4A7A02095371]
  2. Korea Institute of Energy Technology Evaluation and Planning (KETEP) - Korea government (MOTIE) [20214000000090]
  3. Korea Institute of Energy Technology Evaluation & Planning (KETEP) [20214000000090] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

The study successfully fabricated ultra-high permeance thin-film mixed-matrix membranes using highly porous ZIF-8 and a dual-functional imidazole-based comb copolymer. Through optimization of the preparation process, it achieved extremely high CO2 permeance, high CO2/N-2, and CO2/CH4 ideal selectivities.
Despite numerous studies on free-standing, mixed-matrix membranes (MMMs), the development of thin-film MMMs with high permeance is still an ongoing challenge. Here, the successful fabrication of ultra-highpermeance thin-film MMMs on a porous polymer substrate is described based on a highly porous zeolitic imidazole framework (ZIF-8) and a dual-functional imidazole-based comb copolymer. The copolymer of poly (vinyl imidazole)-poly(oxyethylene methacrylate) (PVI-POEM) is synthesized via free-radical polymerization, and it exhibits CO2-philicity, strong adhesion, and good interactions with fillers. In contrast to commercial benchmark membranes such as Pebax, the use of the PVI-POEM comb copolymer results in significant improvement in the CO2 permeance without significant loss of selectivity even at high ZIF-8 loadings and low thickness. It is attributed to the in-situ formation of inverse, asymmetric morphology of MMMs and partial infiltration of PVI-POEM chains into ZIF-8 particles. Optimization of the preparation process, such as ZIF-8 loading, substrate type, and coating layer thickness, leads to an extremely high CO2 permeance of 4474 GPU with high CO2/N-2 and CO2/CH4 ideal selectivities of 32.0 and 12.4, respectively, which is far beyond the current trade-off limit for membranes. The mechanism behind the exceptionally high CO2 separation performance is delineated by exploring molecular dynamic simulation through morphology, structural, and energetic analyses.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据