4.6 Article

Enhanced photocurrent in PbSe nanorod-quantum dot bulk nano-heterojunction solar cells

期刊

出版社

SPRINGER
DOI: 10.1007/s10854-021-07342-y

关键词

-

资金

  1. Scientific and Technological Research Council of Turkey (TUBITAK) [117E787]
  2. Middle East Technical University [TEZ-YL-103-2019-10154, BAP-08-11-2017-012]

向作者/读者索取更多资源

Researchers have increased the efficiency of solar cells by inserting a quantum dot layer at the interface between PbSe nanorods and metal, as well as creating a bulk nano-heterojunction platform. The practical potential of this concept has been demonstrated and a breakthrough has been achieved in the design of MEG-based solar cells.
Owing to their remarkable multiple exciton generation (MEG) yield, PbSe nanorods (NRs) have been considered as one of the most promising materials to overcome the Shockley-Queisser limit. Unfortunately, assessing the direct role of the PbSe NRs in solar cell designs has been challenging due to their unoptimized film microstructure and poor performances. Here we devise a cell architecture that overcomes these limitations by inserting an electron blocking quantum dot (QD) layer to the NR/metal interface. Further enhancement was achieved by creating a bulk nano-heterojunction (BNHJ) platform comprising the covalently bonded PbSe NRs-donors and PbSe QDs-acceptors. The overall benefit of the exciton cascade, enabling an efficient non-radiative energy transfer, was evidenced through a photocurrent enhancement at energies where the hot exciton generation is expected to take place, that is >= 2E(g) (E-g = band gap). Resulting BNHJ solar cells exhibit 2.42% efficiency and a peak internal quantum efficiency of 100% with a threshold photon energy of 2.9 E-g, outperforming the present cells comprising the NRs with similar band gaps. This proof-of-principle demonstrates that the concept of BNHJ has a practical potential and a breakthrough in the design of the MEG-based solar cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据