4.5 Article

Antifungal roles of adult-specific cuticular protein genes of the red flour beetle, Tribolium castaneum

期刊

JOURNAL OF INVERTEBRATE PATHOLOGY
卷 186, 期 -, 页码 -

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jip.2021.107674

关键词

Tribolium castaneum; Entomopathogenic fungus; Insect immunity; Insect cuticle; Cuticular protein

类别

向作者/读者索取更多资源

The study demonstrates the importance of adult-specific cuticular protein genes in the antifungal properties of insect cuticle, with their combined knockdown leading to compromised host defense. Using RNA interference technology, researchers found that these genes play a crucial role in constructing the cuticle of adult insects and contribute significantly to defending against pathogenic fungi.
The insect cuticle is a composite structure that can further be divided into a few sub-structural layers. Its large moiety comprises a lattice of chitin fibrils and structural proteins, both of which are stabilized by covalent bonding among them. The cuticle covers the whole surface of insect body, and thus has long been suggested for the involvement in defense against entomopathogens, especially entomopathogenic fungi that infect percutaneously. We have been addressing this issue in the past few years and have so far demonstrated experimentally that chitin synthase 1, laccase2 as well as benzoquinone synthesis-related genes of Tribolium castaneum have indispensable roles in the antifungal host defense. In the present study we focused on another major component of the insect cuticular integument, structural cuticular proteins. We chose three genes coding for adult-specific cuticular proteins, namely CPR4, CPR18 and CPR27, and examined their roles in forming immunologically sound adult cuticular integuments. Analyses of developmental expression revealed that the three genes showed high level expression in the pupal stage. These results are consistent with their proposed roles in constructing cuticle of adult beetles. The RNA interference-mediated gene knockdown was employed to silence these genes, and the administration of double strand RNAs in pupae resulted in the adults with malformed elytra. The single knockdown of the three genes attenuated somewhat the defense of the resulting adult beetles against Beauveria bassiana and Metarhizium anisopliae, but statistical analyses indicated no significant differences from controls. In contrast, the double or triple knockdown mutant beetles displayed a drastic disruption of the host defense against the two entomopathogenic fungal species irrespective of the combination of targeted cuticular protein genes, demonstrating the important roles of the three cuticular protein genes in conferring robust antifungal properties on the adult cuticle. Scanning electron microscopic observation revealed that the germination of conidia attached on the adult body surface was still suppressed after the gene knockdown as in the case of wild-type beetles, suggesting that the weakened antifungal phenotypes resulted from the combined knockdown of the adult-specific cuticular protein genes could not be accounted for by the disfunction of secretion/retention of fungistatic benzoquinone derivatives.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据