4.7 Review

Zeolitic Imidazolate Frameworks (ZIFs) for aqueous phase adsorption - A review

期刊

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.jiec.2021.09.029

关键词

Adsorption; Environmental protection; Modelling; Water pollution; Zeolitic Imidazolate Frameworks

向作者/读者索取更多资源

This review evaluates the experimental findings on the adsorption of different aqueous pollutants using ZIFs. The main adsorption mechanisms of ZIF are electrostatic attraction, pi-pi interaction, and complexation, with high retention of uptake performance observed.
Zeolitic Imidazolate Frameworks (ZIFs) represents a subclass of the metal-organic frameworks (MOFs), composed mainly of tetrahedrally coordinated transition metals. The aim of this review was to evaluate the experimental findings on the adsorption of different aqueous pollutants using ZIFs. ZIF adsorption mechanism was electrostatic attraction, pi-pi interaction and complexation though others were observed based on pollutant type and nature of the solution chemistry. Thermodynamic modelling revealed that ZIF adsorption is usually spontaneous and endothermic. The adsorbent can be re-used for 3-4 cycles with >70% retention of uptake performance. NaOH, methanol and ethanol were observed to be the more suitable and effective eluents for desorption of adsorbate from ZIF. The nature of the adsorbate and the type of uptake mechanism are the two key considerations in competitive adsorption systems. When the uptake mechanism of the main adsorbate species is different from that of the competing species, then the adsorption process is unaffected. Investigations on adsorbent disposal, targeted modification, functionalisation, emerging contaminants removal, column adsorption studies and molecular modelling would be needed to fill in gaps in knowledge in ZIF related studies. (C) 2021 The Korean Society of Industrial and Engineering Chemistry. Published by Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据