4.7 Article

City-scale optimal location planning of Green Infrastructure using piece-wise linear interpolation and exact optimization methods

期刊

JOURNAL OF HYDROLOGY
卷 601, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jhydrol.2021.126540

关键词

Green Infrastructure; Mixed Integer Linear Programming; Optimization; Piece-wise interpolation; Spatial location; Urban drainage

向作者/读者索取更多资源

This study proposes a method for optimizing green infrastructure location planning using a surrogate model, which proved to be efficient in reducing runoff and overflows issues in Bogota. By implementing GIs in a portion of the city, significant reductions in runoff, CSO, and SSO were achieved.
Green Infrastructure (GI) location planning involves multi-objective spatial analysis considering simultaneous benefits. Fast optimization results are often required (e.g., collaborative modeling exercises and stakeholder involvement workshops), while the simulation-optimization approach is impractical for these cases if it relies on time-consuming simulations of complex drainage system models. This paper proposes a new method using a surrogated model based upon targeted executions of a more complex urban drainage model. This method uses a piece-wise linear interpolation to predict the hydrological impact of individual impervious-to-pervious area changes and the Mixed Integer Linear Optimization to find the optimal location of GI practices. We applied the methodology to the capital city of Colombia, Bogota, with the objectives of reducing runoff, combined sewer overflows (CSOs), and separate sanitary overflows (SSOs). Two multi-objective optimization approaches (i.e., a lexicographic and a weighted-sum model) were explored, showing the high efficiency of this approach in building Pareto Fronts and rapidly suggesting alternative solutions for different budgets. It was found that by implementing GIs on one-third of the city's GI-feasible public areas (2.2% of city area), under a 10-year 6-h rainfall event, the total reduction on runoff, CSO, and SSO are 0.9%, 1.8%, and 2.4%, respectively. These results show the importance of promoting GI among private-land owners, especially in cities with land predominantly private-owned. This new approach is particularly useful for applications under data scarcity and high-uncertainty scenarios.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据