4.7 Article

Natural and reservoir-induced channel changes in the Yangtze River Tidal Reach

期刊

JOURNAL OF HYDROLOGY
卷 605, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jhydrol.2021.127398

关键词

Dam reservoir; Interception and adjustment; Tidal reach; Tide range; Channel deformation

资金

  1. Chinese National Key Programs for Fundamental Research and Development [2017YFGH000440, 2016YFA0600904]
  2. National Natural Science Foundation of China [41671007]
  3. research and development project of East China Normal University [4050020105-222057]

向作者/读者索取更多资源

The Yangtze River Tidal Reach is one of the most important land-sea transition zones in China, but its channel and riverbed have undergone changes due to factors such as the Three Gorges Dam, and further research and understanding are needed.
The Yangtze River Tidal Reach (YRTR) is one of the most important land-sea transition zones in China. The YRTR is 640 km long and the adjacent land area of 220,000 km(2) has a population of ca. 150 million. Even though the effect of Three Gorges Dam (TGD) on its downstream has been extensively studied, a comprehensive understanding of natural and dam-induced changes in the YRTR is still a challenging task. Here we use a digital elevation model and a numerical model to identify the causes of channel changes in the YRTR. Our analysis highlighted three main points.1) Changes in the tidal range caused an increase in the ebb maximum discharge and led to an increase in channel width, depth, and cross-section area. However, the channel depth abruptly starts to dwindle at the transition zone where unidirectional ebb flow changes to bidirectional ebb-flood flows. 2) Dam interception has reduced the sediment supply into the YRTR causing a change from deposition to erosion in the river bed. An increase of one billion m3 in reservoir capacity cut down annual suspended sediment supply by 2.26 million tons and scoured 1.54 million tons of riverbed sediment annually from the YRTR into the estuary. 3) Dam storage caused an increase of ca. 3800 m(3)/s runoff into the YRTR in the spring season during 2001-2013 compared with the same period in 1959-1970. This caused an average increase of ca.10% in the water diversion rate into the branch and an increase in flow velocity in flood plains and branch channels of 2.9 and 2.5 times that in the trunk channels. Such hydrodynamic increases have accelerated erosion of the branches and flood plains in recent decades especially post TGD. The study presents original insights into the tidal channel longitudinal abrupt changes induced by shift of natural flow regime, and riverbed changes from deposition to erosion induced by reservoirs, and indicates the likely response of the YRTR to further decline in sediment load in the future.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据