4.7 Article

The dosage-effect of biochar on anaerobic digestion under the suppression of oily sludge: Performance variation, microbial community succession and potential detoxification mechanisms

期刊

JOURNAL OF HAZARDOUS MATERIALS
卷 421, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jhazmat.2021.126819

关键词

Biochar; Oily sludge; Anaerobic digestion; Metabolism functions; Microbial community

资金

  1. National Natural Science Foundation of China [51608304, U1806216]
  2. Young Scholars Program of Shandong University, The Fundamental Research Funds of Shandong University''
  3. China Postdoctoral Science Foundation [2017M622209, 2019T120599]

向作者/读者索取更多资源

The study found that moderate application of biochar can alleviate the bio-toxicity suppression of oily sludge, improving methane fermentation efficiency and enhancing mesophilic digestion performance through the promotion of interspecies electron transfer among microorganisms.
This study investigated the dosage-effect of biochar on the suppressed mesophilic digestion of oily sludge (OS) containing naphthalene (recalcitrant compound) and starch (easily bioavailable substrate). Methanogenesis was inhibited in control with OS, where biomethane yield (63.33 mL/gVS) was obviously lower than theoretical yield (260.55 mL/gVS). With adding optimal dose of biochar (0.60 g/gVS OS), the highest CH4 yield (138.41 mL/gVS) was 2.19 times of control. Meanwhile, the efficiencies of hydrolysis, acidogenesis and acetogenesis were significantly enhanced. However, excessive biochar (4.80 g/gVS OS) caused negative effects with methanogenic efficiency diminished by 32.5% and lag phase prolonged by 5.72 h. Dissolved organic matter (DOM) analysis showed that humic acid-like and fulvic acid-like components percentages of fluorescence regional integration were decreased because of the adsorption of biochar. In addition, biochar mediating interspecies electron transfer selectively enriched electroactive fermentation bacteria (Clostridium and Bacteroides) and acetoclastic Methanosaeta, which was responsible for promoting mesophilic digestion performance. The functional genes related to metabolism and environmental information processing were potentially activated by biochar. Above results indicate that moderate biochar application may mitigate the bio-toxicity suppression of OS, which help to provide a promising pathway for reinforcing oily wastes bio-treatment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据