4.7 Article

Nonprecious bimetallic Fe, Mo-embedded N-enriched porous biochar for efficient oxidation of aqueous organic contaminants

期刊

JOURNAL OF HAZARDOUS MATERIALS
卷 422, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jhazmat.2021.126776

关键词

Nonprecious metal; Bimetal; Peroxymonosulfate; Organic pollutants; Biochar

资金

  1. National Natural Science Foundation of China, China [21876039]
  2. Australian Research Council [DP190103548]

向作者/读者索取更多资源

Fe-Mo@N-BC is a cost-effective and highly efficient catalyst developed for mineralization of non-biodegradation organic contaminants. The superior activity is attributed to N-doping and synergistic effect of Fe and Mo species, leading to the efficient activation of peroxymonosulfate.
Bimetallic Fe-and Mo-embedded N-enriched porous biochar (Fe-Mo@N-BC) is developed and serves as a cost-effective and highly efficient catalyst for mineralization of non-biodegradation organic contaminants. Fe-Mo@N-BC was prepared by pyrolysis of complex Fe/Mo-containing precursors. Transmission electron micro-scopy and elemental mapping suggested that Fe and Mo are uniformly dispersed in nitrogen-doped biochar with hierarchical mesopores. In comparison to Fe@N-BC and Mo@N-BC, Fe-Mo@N-BC exhibited a superior activity for activating peroxymonosulfate (PMS). The stable activity was ascribed to N-doping and synergistic effect of Fe and Mo species, where both Fe-N-x and Mo-N-x can simultaneously serve as the active sites and N-BC can act as a carrier and an activator as well as an electron mediator. Electron paramagnetic resonance and quenching experiments indicated that HO center dot, O-2(center dot-) and O-1(2) were responsible for organic degradation. The effects of PMS dosage, initial Orange II concentration, temperature, solution pH, coexisting anions and humic acids on organic degradation were also investigated. With the assistance of an external magnet, Fe-Mo@N-BC can be easily separated after reaction and remains stable in the reusability tests. This work demonstrates a feasible strategy towards the fabrication of Fe, Mo-embedded N-enriched porous biochar catalysts for the detoxification of organic contaminants.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据